IF-City : Intelligible Fair City Planning to Measure, Explain and Mitigate Inequality

With the increasing pervasiveness of Artificial Intelligence (AI), many visual analytics tools have been proposed to examine fairness, but they mostly focus on data scientist users. Instead, tackling fairness must be inclusive and involve domain experts with specialized tools and workflows. Thus, do...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 7 vom: 10. Juni, Seite 3749-3766
1. Verfasser: Lyu, Yan (VerfasserIn)
Weitere Verfasser: Lu, Hangxin, Lee, Min Kyung, Schmitt, Gerhard, Lim, Brian Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM355267276
003 DE-627
005 20240628231859.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3239909  |2 doi 
028 5 2 |a pubmed24n1454.xml 
035 |a (DE-627)NLM355267276 
035 |a (NLM)37022033 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lyu, Yan  |e verfasserin  |4 aut 
245 1 0 |a IF-City  |b Intelligible Fair City Planning to Measure, Explain and Mitigate Inequality 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With the increasing pervasiveness of Artificial Intelligence (AI), many visual analytics tools have been proposed to examine fairness, but they mostly focus on data scientist users. Instead, tackling fairness must be inclusive and involve domain experts with specialized tools and workflows. Thus, domain-specific visualizations are needed for algorithmic fairness. Furthermore, while much work on AI fairness has focused on predictive decisions, less has been done for fair allocation and planning, which require human expertise and iterative design to integrate myriad constraints. We propose the Intelligible Fair Allocation (IF-Alloc) Framework that leverages explanations of causal attribution (Why), contrastive (Why Not) and counterfactual reasoning (What If, How To) to aid domain experts to assess and alleviate unfairness in allocation problems. We apply the framework to fair urban planning for designing cities that provide equal access to amenities and benefits for diverse resident types. Specifically, we propose an interactive visual tool, Intelligible Fair City Planner (IF-City), to help urban planners to perceive inequality across groups, identify and attribute sources of inequality, and mitigate inequality with automatic allocation simulations and constraint-satisfying recommendations (IF-Plan). We demonstrate and evaluate the usage and usefulness of IF-City on a real neighborhood in New York City, US, with practicing urban planners from multiple countries, and discuss generalizing our findings, application, and framework to other use cases and applications of fair allocation 
650 4 |a Journal Article 
700 1 |a Lu, Hangxin  |e verfasserin  |4 aut 
700 1 |a Lee, Min Kyung  |e verfasserin  |4 aut 
700 1 |a Schmitt, Gerhard  |e verfasserin  |4 aut 
700 1 |a Lim, Brian Y  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 7 vom: 10. Juni, Seite 3749-3766  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:7  |g day:10  |g month:06  |g pages:3749-3766 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3239909  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 7  |b 10  |c 06  |h 3749-3766