Edge Devices Clustering for Federated Visual Classification : A Feature Norm Based Framework

Federated learning is a privacy-preserving distributed learning paradigm where multiple devices collaboratively train a model, which is applicable to edge computing environments. However, the non-IID data distributed in multiple devices degrades the performance of the federated model due to severe w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2023) vom: 20. Jan.
1. Verfasser: Wei, Xiao-Xiang (VerfasserIn)
Weitere Verfasser: Huang, Hua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355267195
003 DE-627
005 20231226064005.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3237014  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355267195 
035 |a (NLM)37022024 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wei, Xiao-Xiang  |e verfasserin  |4 aut 
245 1 0 |a Edge Devices Clustering for Federated Visual Classification  |b A Feature Norm Based Framework 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Federated learning is a privacy-preserving distributed learning paradigm where multiple devices collaboratively train a model, which is applicable to edge computing environments. However, the non-IID data distributed in multiple devices degrades the performance of the federated model due to severe weight divergence. This paper presents a clustered federated learning framework named cFedFN for visual classification tasks in order to reduce the degradation. Especially, this framework introduces the computation of feature norm vectors in the local training process and divides the devices into multiple groups by the similarities of the data distributions to reduce the weight divergences for better performance. As a result, this framework gains better performance on non-IID data without leakage of the private raw data. Experiments on various visual classification datasets demonstrate the superiority of this framework over the state-of-the-art clustered federated learning frameworks 
650 4 |a Journal Article 
700 1 |a Huang, Hua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2023) vom: 20. Jan.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:20  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3237014  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 20  |c 01