Graph Diffusion Convolutional Network for Skeleton Based Semantic Recognition of Two-Person Actions

Graph Convolutional Networks (GCNs) have successfully boosted skeleton-based human action recognition. However, existing GCN-based methods mostly cast the problem as separated person's action recognition while ignoring the interaction between the action initiator and the action responder, espec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 01. Juli, Seite 8477-8493
1. Verfasser: Li, Shuai (VerfasserIn)
Weitere Verfasser: He, Xinxue, Song, Wenfeng, Hao, Aimin, Qin, Hong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM355267136
003 DE-627
005 20250304151620.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3238411  |2 doi 
028 5 2 |a pubmed25n1183.xml 
035 |a (DE-627)NLM355267136 
035 |a (NLM)37022018 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Shuai  |e verfasserin  |4 aut 
245 1 0 |a Graph Diffusion Convolutional Network for Skeleton Based Semantic Recognition of Two-Person Actions 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2023 
500 |a Date Revised 06.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Graph Convolutional Networks (GCNs) have successfully boosted skeleton-based human action recognition. However, existing GCN-based methods mostly cast the problem as separated person's action recognition while ignoring the interaction between the action initiator and the action responder, especially for the fundamental two-person interactive action recognition. It is still challenging to effectively take into account the intrinsic local-global clues of the two-person activity. Additionally, message passing in GCN depends on adjacency matrix, but skeleton-based human action recognition methods tend to calculate the adjacency matrix with the fixed natural skeleton connectivity. It means that messages can only travel along a fixed path at different layers of the network or in different actions, which greatly reduces the flexibility of the network. To this end, we propose a novel graph diffusion convolutional network for skeleton based semantic recognition of two-person actions by embedding the graph diffusion into GCNs. At technical fronts, we dynamically construct the adjacency matrix based on practical action information, so that we can guide the message propagation in a more meaningful way. Simultaneously, we introduce the frame importance calculation module to conduct dynamic convolution, so that we can avoid the negative effect caused by the traditional convolution, wherein the shared weights may fail to capture key frames or be affected by noisy frames. Besides, we comprehensively leverage the multidimensional features related to joints' local visual appearances, global spatial relationship and temporal coherency, and for different features, different metrics are designed to measure the similarity underlying the corresponding real physical law of the motions. Moreover, extensive experiments and comprehensive evaluations on four public large-scale datasets (NTU-RGB+D 60, NTU-RGB+D 120, Kinetics-Skeleton 400, and SBU-Interaction) demonstrate that our method outperforms the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a He, Xinxue  |e verfasserin  |4 aut 
700 1 |a Song, Wenfeng  |e verfasserin  |4 aut 
700 1 |a Hao, Aimin  |e verfasserin  |4 aut 
700 1 |a Qin, Hong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 01. Juli, Seite 8477-8493  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:01  |g month:07  |g pages:8477-8493 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3238411  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 01  |c 07  |h 8477-8493