The Cm14-3-3μ protein and CCT transcription factor CmNRRa delay flowering in chrysanthemum

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 74(2023), 14 vom: 03. Aug., Seite 4063-4076
1. Verfasser: Cheng, Hua (VerfasserIn)
Weitere Verfasser: Zhang, Jiaxin, Zhang, Yu, Si, Chaona, Wang, Juanjuan, Gao, Zheng, Cao, Peipei, Cheng, Peilei, He, Yuehui, Chen, Sumei, Chen, Fadi, Jiang, Jiafu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't CmAFL1 CmFTL3 CmTFL1 14-3-3 protein CCT protein CmNRRa chrysanthemum flowering mehr... Transcription Factors Plant Proteins
Beschreibung
Zusammenfassung:© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
The floral transition from vegetative to reproductive growth is pivotal in the plant life cycle. NUTRITION RESPONSE AND ROOT GROWTH (OsNRRa), as a CONSTANS, CONSTANS-LIKE, TOC1 (CCT) domain protein, delays flowering in rice, and an orthologous protein, CmNRRa, inhibits flowering in chrysanthemum; however, the underlying mechanism remains unknown. In this study, using yeast two-hybrid screening, we identified the 14-3-3 protein family member Cm14-3-3µ as a CmNRRa-interacting protein. A combination of bimolecular fluorescence complementation, pull-down, and co-immunoprecipitation assays was performed to confirm the physical interaction between CmNRRa and Cm14-3-3µ. In addition, expression analysis showed that CmNRRa but not Cm14-3-3µ responded to the diurnal rhythm, whereas both genes were highly expressed in leaves. Moreover, the function of Cm14-3-3µ in flowering time regulation was similar to that of CmNRRa. Furthermore, CmNRRa repressed chrysanthemum FLOWERING LOCUS T-like 3 (CmFTL3) and an APETALA 1 (AP1)/FRUITFULL (FUL)-like gene (CmAFL1) but induced TERMINAL FLOWER1 (CmTFL1) directly by binding to their promoters. Cm14-3-3µ enhanced the ability of CmNRRa to regulate the expression of these genes. These findings suggest that there is a synergistic relationship between CmNRRa and Cm14-3-3µ in flowering repression in chrysanthemum
Beschreibung:Date Completed 07.08.2023
Date Revised 07.08.2023
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erad130