FingerGAN : A Constrained Fingerprint Generation Scheme for Latent Fingerprint Enhancement

Latent fingerprint enhancement is an essential preprocessing step for latent fingerprint identification. Most latent fingerprint enhancement methods try to restore corrupted gray ridges/valleys. In this paper, we propose a new method that formulates latent fingerprint enhancement as a constrained fi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 13. Juli, Seite 8358-8371
1. Verfasser: Zhu, Yanming (VerfasserIn)
Weitere Verfasser: Yin, Xuefei, Hu, Jiankun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM35523386X
003 DE-627
005 20231226063922.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3236876  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM35523386X 
035 |a (NLM)37018679 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Yanming  |e verfasserin  |4 aut 
245 1 0 |a FingerGAN  |b A Constrained Fingerprint Generation Scheme for Latent Fingerprint Enhancement 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2023 
500 |a Date Revised 06.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Latent fingerprint enhancement is an essential preprocessing step for latent fingerprint identification. Most latent fingerprint enhancement methods try to restore corrupted gray ridges/valleys. In this paper, we propose a new method that formulates latent fingerprint enhancement as a constrained fingerprint generation problem within a generative adversarial network (GAN) framework. We name the proposed network FingerGAN. It can enforce its generated fingerprint (i.e, enhanced latent fingerprint) indistinguishable from the corresponding ground truth instance in terms of the fingerprint skeleton map weighted by minutia locations and the orientation field regularized by the FOMFE model. Because minutia is the primary feature for fingerprint recognition and minutia can be retrieved directly from the fingerprint skeleton map, we offer a holistic framework that can perform latent fingerprint enhancement in the context of directly optimizing minutia information. This will help improve latent fingerprint identification performance significantly. Experimental results on two public latent fingerprint databases demonstrate that our method outperforms the state of the arts significantly. The codes will be available for non-commercial purposes from https://github.com/HubYZ/LatentEnhancement 
650 4 |a Journal Article 
700 1 |a Yin, Xuefei  |e verfasserin  |4 aut 
700 1 |a Hu, Jiankun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 13. Juli, Seite 8358-8371  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:13  |g month:07  |g pages:8358-8371 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3236876  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 13  |c 07  |h 8358-8371