Detection-Friendly Dehazing : Object Detection in Real-World Hazy Scenes

Adverse weather conditions in real-world scenarios lead to performance degradation of deep learning-based detection models. A well-known method is to use image restoration methods to enhance degraded images before object detection. However, how to build a positive correlation between these two tasks...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 09. Juli, Seite 8284-8295
1. Verfasser: Li, Chengyang (VerfasserIn)
Weitere Verfasser: Zhou, Heng, Liu, Yang, Yang, Caidong, Xie, Yongqiang, Li, Zhongbo, Zhu, Liping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355232898
003 DE-627
005 20231226063921.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3234976  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355232898 
035 |a (NLM)37018582 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Chengyang  |e verfasserin  |4 aut 
245 1 0 |a Detection-Friendly Dehazing  |b Object Detection in Real-World Hazy Scenes 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2023 
500 |a Date Revised 06.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Adverse weather conditions in real-world scenarios lead to performance degradation of deep learning-based detection models. A well-known method is to use image restoration methods to enhance degraded images before object detection. However, how to build a positive correlation between these two tasks is still technically challenging. The restoration labels are also unavailable in practice. To this end, taking the hazy scene as an example, we propose a union architecture BAD-Net that connects the dehazing module and detection module in an end-to-end manner. Specifically, we design a two-branch structure with an attention fusion module for fully combining hazy and dehazing features. This reduces bad impacts on the detection module when the dehazing module performs poorly. Besides, we introduce a self-supervised haze robust loss that enables the detection module to deal with different degrees of haze. Most importantly, an interval iterative data refinement training strategy is proposed to guide the dehazing module learning with weak supervision. BAD-Net improves further detection performance through detection-friendly dehazing. Extensive experiments on RTTS and VOChaze datasets show that BAD-Net achieves higher accuracy compared to the recent state-of-the-art methods. It is a robust detection framework for bridging the gap between low-level dehazing and high-level detection 
650 4 |a Journal Article 
700 1 |a Zhou, Heng  |e verfasserin  |4 aut 
700 1 |a Liu, Yang  |e verfasserin  |4 aut 
700 1 |a Yang, Caidong  |e verfasserin  |4 aut 
700 1 |a Xie, Yongqiang  |e verfasserin  |4 aut 
700 1 |a Li, Zhongbo  |e verfasserin  |4 aut 
700 1 |a Zhu, Liping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 09. Juli, Seite 8284-8295  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:09  |g month:07  |g pages:8284-8295 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3234976  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 09  |c 07  |h 8284-8295