Efficient Anomaly Detection Using Self-Supervised Multi-Cue Tasks

Anomaly detection is important in many real-life applications. Recently, self-supervised learning has greatly helped deep anomaly detection by recognizing several geometric transformations. However these methods lack finer features, usually highly depend on the anomaly type, and do not perform well...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2023) vom: 09. Jan.
1. Verfasser: Jezequel, Loic (VerfasserIn)
Weitere Verfasser: Vu, Ngoc-Son, Beaudet, Jean, Histace, Aymeric
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355232626
003 DE-627
005 20231226063921.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3231532  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355232626 
035 |a (NLM)37018555 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jezequel, Loic  |e verfasserin  |4 aut 
245 1 0 |a Efficient Anomaly Detection Using Self-Supervised Multi-Cue Tasks 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Anomaly detection is important in many real-life applications. Recently, self-supervised learning has greatly helped deep anomaly detection by recognizing several geometric transformations. However these methods lack finer features, usually highly depend on the anomaly type, and do not perform well on fine-grained problems. To address these issues, we first introduce in this work three novel and efficient discriminative and generative tasks which have complementary strength: (i) a piece-wise jigsaw puzzle task focuses on structure cues; (ii) a tint rotation recognition is used within each piece, taking into account the colorimetry information; (iii) and a partial re-colorization task considers the image texture. In order to make the re-colorization task more object-oriented than background-oriented, we propose to include the contextual color information of the image border via an attention mechanism.We then present a new out-of-distribution detection function and highlight its better stability compared to existing methods. Along with it, we also experiment different score fusion functions. Finally, we evaluate our method on an extensive protocol composed of various anomaly types, from object anomalies, style anomalies with fine-grained classification to local anomalies with face anti-spoofing datasets. Our model significantly outperforms state-of-the-art with up to 36% relative error improvement on object anomalies and 40% on face anti-spoofing problems 
650 4 |a Journal Article 
700 1 |a Vu, Ngoc-Son  |e verfasserin  |4 aut 
700 1 |a Beaudet, Jean  |e verfasserin  |4 aut 
700 1 |a Histace, Aymeric  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2023) vom: 09. Jan.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:09  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3231532  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 09  |c 01