A leaf-level spectral library to support high-throughput plant phenotyping : predictive accuracy and model transfer

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 74(2023), 14 vom: 03. Aug., Seite 4050-4062
1. Verfasser: Wijewardane, Nuwan K (VerfasserIn)
Weitere Verfasser: Zhang, Huichun, Yang, Jinliang, Schnable, James C, Schachtman, Daniel P, Ge, Yufeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Biochemical traits camelina extra-weighted spiking high-throughput phenotyping leaf hyperspectral reflectance machine-learning maize partial least squares regression mehr... sorghum soybean trait modeling Chlorophyll 1406-65-1
LEADER 01000caa a22002652 4500
001 NLM355231689
003 DE-627
005 20231227131208.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erad129  |2 doi 
028 5 2 |a pubmed24n1225.xml 
035 |a (DE-627)NLM355231689 
035 |a (NLM)37018460 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wijewardane, Nuwan K  |e verfasserin  |4 aut 
245 1 2 |a A leaf-level spectral library to support high-throughput plant phenotyping  |b predictive accuracy and model transfer 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.08.2023 
500 |a Date Revised 13.12.2023 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. 
520 |a Leaf-level hyperspectral reflectance has become an effective tool for high-throughput phenotyping of plant leaf traits due to its rapid, low-cost, multi-sensing, and non-destructive nature. However, collecting samples for model calibration can still be expensive, and models show poor transferability among different datasets. This study had three specific objectives: first, to assemble a large library of leaf hyperspectral data (n=2460) from maize and sorghum; second, to evaluate two machine-learning approaches to estimate nine leaf properties (chlorophyll, thickness, water content, nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur); and third, to investigate the usefulness of this spectral library for predicting external datasets (n=445) including soybean and camelina using extra-weighted spiking. Internal cross-validation showed satisfactory performance of the spectral library to estimate all nine traits (mean R2=0.688), with partial least-squares regression outperforming deep neural network models. Models calibrated solely using the spectral library showed degraded performance on external datasets (mean R2=0.159 for camelina, 0.337 for soybean). Models improved significantly when a small portion of external samples (n=20) was added to the library via extra-weighted spiking (mean R2=0.574 for camelina, 0.536 for soybean). The leaf-level spectral library greatly benefits plant physiological and biochemical phenotyping, whilst extra-weight spiking improves model transferability and extends its utility 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Biochemical traits 
650 4 |a camelina 
650 4 |a extra-weighted spiking 
650 4 |a high-throughput phenotyping 
650 4 |a leaf hyperspectral reflectance 
650 4 |a machine-learning 
650 4 |a maize 
650 4 |a partial least squares regression 
650 4 |a sorghum 
650 4 |a soybean 
650 4 |a trait modeling 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
700 1 |a Zhang, Huichun  |e verfasserin  |4 aut 
700 1 |a Yang, Jinliang  |e verfasserin  |4 aut 
700 1 |a Schnable, James C  |e verfasserin  |4 aut 
700 1 |a Schachtman, Daniel P  |e verfasserin  |4 aut 
700 1 |a Ge, Yufeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 74(2023), 14 vom: 03. Aug., Seite 4050-4062  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:74  |g year:2023  |g number:14  |g day:03  |g month:08  |g pages:4050-4062 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erad129  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 74  |j 2023  |e 14  |b 03  |c 08  |h 4050-4062