Querying Labeled for Unlabeled : Cross-Image Semantic Consistency Guided Semi-Supervised Semantic Segmentation

Semi-supervised semantic segmentation aims to learn a semantic segmentation model via limited labeled images and adequate unlabeled images. The key to this task is generating reliable pseudo labels for unlabeled images. Existing methods mainly focus on producing reliable pseudo labels based on the c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 02. Juli, Seite 8827-8844
1. Verfasser: Wu, Linshan (VerfasserIn)
Weitere Verfasser: Fang, Leyuan, He, Xingxin, He, Min, Ma, Jiayi, Zhong, Zhun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355230283
003 DE-627
005 20231226063918.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3233584  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355230283 
035 |a (NLM)37018311 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Linshan  |e verfasserin  |4 aut 
245 1 0 |a Querying Labeled for Unlabeled  |b Cross-Image Semantic Consistency Guided Semi-Supervised Semantic Segmentation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2023 
500 |a Date Revised 06.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Semi-supervised semantic segmentation aims to learn a semantic segmentation model via limited labeled images and adequate unlabeled images. The key to this task is generating reliable pseudo labels for unlabeled images. Existing methods mainly focus on producing reliable pseudo labels based on the confidence scores of unlabeled images while largely ignoring the use of labeled images with accurate annotations. In this paper, we propose a Cross-Image Semantic Consistency guided Rectifying (CISC-R) approach for semi-supervised semantic segmentation, which explicitly leverages the labeled images to rectify the generated pseudo labels. Our CISC-R is inspired by the fact that images belonging to the same class have a high pixel-level correspondence. Specifically, given an unlabeled image and its initial pseudo labels, we first query a guiding labeled image that shares the same semantic information with the unlabeled image. Then, we estimate the pixel-level similarity between the unlabeled image and the queried labeled image to form a CISC map, which guides us to achieve a reliable pixel-level rectification for the pseudo labels. Extensive experiments on the PASCAL VOC 2012, Cityscapes, and COCO datasets demonstrate that the proposed CISC-R can significantly improve the quality of the pseudo labels and outperform the state-of-the-art methods. Code is available at https://github.com/Luffy03/CISC-R 
650 4 |a Journal Article 
700 1 |a Fang, Leyuan  |e verfasserin  |4 aut 
700 1 |a He, Xingxin  |e verfasserin  |4 aut 
700 1 |a He, Min  |e verfasserin  |4 aut 
700 1 |a Ma, Jiayi  |e verfasserin  |4 aut 
700 1 |a Zhong, Zhun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 02. Juli, Seite 8827-8844  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:02  |g month:07  |g pages:8827-8844 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3233584  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 02  |c 07  |h 8827-8844