Invariant Policy Learning : A Causal Perspective

Contextual bandit and reinforcement learning algorithms have been successfully used in various interactive learning systems such as online advertising, recommender systems, and dynamic pricing. However, they have yet to be widely adopted in high-stakes application domains, such as healthcare. One re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 03. Juli, Seite 8606-8620
1. Verfasser: Saengkyongam, Sorawit (VerfasserIn)
Weitere Verfasser: Thams, Nikolaj, Peters, Jonas, Pfister, Niklas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355229846
003 DE-627
005 20231226063917.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3232363  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355229846 
035 |a (NLM)37018267 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Saengkyongam, Sorawit  |e verfasserin  |4 aut 
245 1 0 |a Invariant Policy Learning  |b A Causal Perspective 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2023 
500 |a Date Revised 06.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Contextual bandit and reinforcement learning algorithms have been successfully used in various interactive learning systems such as online advertising, recommender systems, and dynamic pricing. However, they have yet to be widely adopted in high-stakes application domains, such as healthcare. One reason may be that existing approaches assume that the underlying mechanisms are static in the sense that they do not change over different environments. In many real-world systems, however, the mechanisms are subject to shifts across environments which may invalidate the static environment assumption. In this paper, we take a step toward tackling the problem of environmental shifts considering the framework of offline contextual bandits. We view the environmental shift problem through the lens of causality and propose multi-environment contextual bandits that allow for changes in the underlying mechanisms. We adopt the concept of invariance from the causality literature and introduce the notion of policy invariance. We argue that policy invariance is only relevant if unobserved variables are present and show that, in that case, an optimal invariant policy is guaranteed to generalize across environments under suitable assumptions 
650 4 |a Journal Article 
700 1 |a Thams, Nikolaj  |e verfasserin  |4 aut 
700 1 |a Peters, Jonas  |e verfasserin  |4 aut 
700 1 |a Pfister, Niklas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 03. Juli, Seite 8606-8620  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:03  |g month:07  |g pages:8606-8620 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3232363  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 03  |c 07  |h 8606-8620