A Unified Visual Information Preservation Framework for Self-supervised Pre-Training in Medical Image Analysis

Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local informa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 03. Juli, Seite 8020-8035
1. Verfasser: Zhou, Hong-Yu (VerfasserIn)
Weitere Verfasser: Lu, Chixiang, Chen, Chaoqi, Yang, Sibei, Yu, Yizhou
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355229803
003 DE-627
005 20231226063917.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3234002  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355229803 
035 |a (NLM)37018263 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Hong-Yu  |e verfasserin  |4 aut 
245 1 2 |a A Unified Visual Information Preservation Framework for Self-supervised Pre-Training in Medical Image Analysis 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.06.2023 
500 |a Date Revised 20.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local information, which is vital in medical image analysis (e.g., image-based diagnosis and tumor segmentation). To mitigate the locality problem of comparative SSL, we propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics. We also address the preservation of scale information, a powerful tool in aiding image understanding but has not drawn much attention in SSL. The resulting framework can be formulated as a multi-task optimization problem on the feature pyramid. Specifically, we conduct multi-scale pixel restoration and siamese feature comparison in the pyramid. In addition, we propose non-skip U-Net to build the feature pyramid and develop sub-crop to replace multi-crop in 3D medical imaging. The proposed unified SSL framework (PCRLv2) surpasses its self-supervised counterparts on various tasks, including brain tumor segmentation (BraTS 2018), chest pathology identification (ChestX-ray, CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation (LiTS), sometimes outperforming them by large margins with limited annotations. Codes and models are available at https://github.com/RL4M/PCRLv2 
650 4 |a Journal Article 
700 1 |a Lu, Chixiang  |e verfasserin  |4 aut 
700 1 |a Chen, Chaoqi  |e verfasserin  |4 aut 
700 1 |a Yang, Sibei  |e verfasserin  |4 aut 
700 1 |a Yu, Yizhou  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 03. Juli, Seite 8020-8035  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:03  |g month:07  |g pages:8020-8035 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3234002  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 03  |c 07  |h 8020-8035