TransZero++ : Cross Attribute-Guided Transformer for Zero-Shot Learning

Zero-shot learning (ZSL) tackles the novel class recognition problem by transferring semantic knowledge from seen classes to unseen ones. Semantic knowledge is typically represented by attribute descriptions shared between different classes, which act as strong priors for localizing object attribute...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 11 vom: 15. Nov., Seite 12844-12861
1. Verfasser: Chen, Shiming (VerfasserIn)
Weitere Verfasser: Hong, Ziming, Hou, Wenjin, Xie, Guo-Sen, Song, Yibing, Zhao, Jian, You, Xinge, Yan, Shuicheng, Shao, Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM355204274
003 DE-627
005 20250304150755.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3229526  |2 doi 
028 5 2 |a pubmed25n1183.xml 
035 |a (DE-627)NLM355204274 
035 |a (NLM)37015683 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Shiming  |e verfasserin  |4 aut 
245 1 0 |a TransZero++  |b Cross Attribute-Guided Transformer for Zero-Shot Learning 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Zero-shot learning (ZSL) tackles the novel class recognition problem by transferring semantic knowledge from seen classes to unseen ones. Semantic knowledge is typically represented by attribute descriptions shared between different classes, which act as strong priors for localizing object attributes that represent discriminative region features, enabling significant and sufficient visual-semantic interaction for advancing ZSL. Existing attention-based models have struggled to learn inferior region features in a single image by solely using unidirectional attention, which ignore the transferable and discriminative attribute localization of visual features for representing the key semantic knowledge for effective knowledge transfer in ZSL. In this paper, we propose a cross attribute-guided Transformer network, termed TransZero++, to refine visual features and learn accurate attribute localization for key semantic knowledge representations in ZSL. Specifically, TransZero++ employs an attribute → visual Transformer sub-net (AVT) and a visual → attribute Transformer sub-net (VAT) to learn attribute-based visual features and visual-based attribute features, respectively. By further introducing feature-level and prediction-level semantical collaborative losses, the two attribute-guided transformers teach each other to learn semantic-augmented visual embeddings for key semantic knowledge representations via semantical collaborative learning. Finally, the semantic-augmented visual embeddings learned by AVT and VAT are fused to conduct desirable visual-semantic interaction cooperated with class semantic vectors for ZSL classification. Extensive experiments show that TransZero++ achieves the new state-of-the-art results on three golden ZSL benchmarks and on the large-scale ImageNet dataset. The project website is available at: https://shiming-chen.github.io/TransZero-pp/TransZero-pp.html 
650 4 |a Journal Article 
700 1 |a Hong, Ziming  |e verfasserin  |4 aut 
700 1 |a Hou, Wenjin  |e verfasserin  |4 aut 
700 1 |a Xie, Guo-Sen  |e verfasserin  |4 aut 
700 1 |a Song, Yibing  |e verfasserin  |4 aut 
700 1 |a Zhao, Jian  |e verfasserin  |4 aut 
700 1 |a You, Xinge  |e verfasserin  |4 aut 
700 1 |a Yan, Shuicheng  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 11 vom: 15. Nov., Seite 12844-12861  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:11  |g day:15  |g month:11  |g pages:12844-12861 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3229526  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 11  |b 15  |c 11  |h 12844-12861