A Deep Framework for Hyperspectral Image Fusion Between Different Satellites
Recently, fusing a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) of different satellites has become an effective way to improve the resolution of an HSI. However, due to different imaging satellites, different illumination, and adjacent imaging time,...
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 19. Juli, Seite 7939-7954 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2023
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
| Schlagworte: | Journal Article |
| Zusammenfassung: | Recently, fusing a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) of different satellites has become an effective way to improve the resolution of an HSI. However, due to different imaging satellites, different illumination, and adjacent imaging time, the LR-HSI and HR-MSI may not satisfy the observation models established by existing works, and the LR-HSI and HR-MSI are hard to be registered. To solve the above problems, we establish new observation models for LR-HSIs and HR-MSIs from different satellites, then a deep-learning-based framework is proposed to solve the key steps in multi-satellite HSI fusion, including image registration, blur kernel learning, and image fusion. Specifically, we first construct a convolutional neural network (CNN), called RegNet, to produce pixel-wise offsets between LR-HSI and HR-MSI, which are utilized to register the LR-HSI. Next, according to the new observation models, a tiny network, called BKLNet, is built to learn the spectral and spatial blur kernels, where the BKLNet and RegNet can be trained jointly. In the fusion part, we further train a FusNet by downsampling the registered data with the learned spatial blur kernel. Extensive experiments demonstrate the superiority of the proposed framework in HSI registration and fusion accuracy |
|---|---|
| Beschreibung: | Date Completed 06.06.2023 Date Revised 06.06.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1939-3539 |
| DOI: | 10.1109/TPAMI.2022.3229433 |