A Deep Framework for Hyperspectral Image Fusion Between Different Satellites

Recently, fusing a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) of different satellites has become an effective way to improve the resolution of an HSI. However, due to different imaging satellites, different illumination, and adjacent imaging time,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 19. Juli, Seite 7939-7954
1. Verfasser: Guo, Anjing (VerfasserIn)
Weitere Verfasser: Dian, Renwei, Li, Shutao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Recently, fusing a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) of different satellites has become an effective way to improve the resolution of an HSI. However, due to different imaging satellites, different illumination, and adjacent imaging time, the LR-HSI and HR-MSI may not satisfy the observation models established by existing works, and the LR-HSI and HR-MSI are hard to be registered. To solve the above problems, we establish new observation models for LR-HSIs and HR-MSIs from different satellites, then a deep-learning-based framework is proposed to solve the key steps in multi-satellite HSI fusion, including image registration, blur kernel learning, and image fusion. Specifically, we first construct a convolutional neural network (CNN), called RegNet, to produce pixel-wise offsets between LR-HSI and HR-MSI, which are utilized to register the LR-HSI. Next, according to the new observation models, a tiny network, called BKLNet, is built to learn the spectral and spatial blur kernels, where the BKLNet and RegNet can be trained jointly. In the fusion part, we further train a FusNet by downsampling the registered data with the learned spatial blur kernel. Extensive experiments demonstrate the superiority of the proposed framework in HSI registration and fusion accuracy
Beschreibung:Date Completed 06.06.2023
Date Revised 06.06.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2022.3229433