Searching for Network Width With Bilaterally Coupled Network

Searching for a more compact network width recently serves as an effective way of channel pruning for the deployment of convolutional neural networks (CNNs) under hardware constraints. To fulfil the searching, a one-shot supernet is usually leveraged to efficiently evaluate the performance w.r.t. di...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 05. Juli, Seite 8936-8953
1. Verfasser: Su, Xiu (VerfasserIn)
Weitere Verfasser: You, Shan, Xie, Jiyang, Wang, Fei, Qian, Chen, Zhang, Changshui, Xu, Chang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355203170
003 DE-627
005 20231226063840.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3226777  |2 doi 
028 5 2 |a pubmed24n1183.xml 
035 |a (DE-627)NLM355203170 
035 |a (NLM)37015571 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Su, Xiu  |e verfasserin  |4 aut 
245 1 0 |a Searching for Network Width With Bilaterally Coupled Network 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2023 
500 |a Date Revised 06.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Searching for a more compact network width recently serves as an effective way of channel pruning for the deployment of convolutional neural networks (CNNs) under hardware constraints. To fulfil the searching, a one-shot supernet is usually leveraged to efficiently evaluate the performance w.r.t. different network widths. However, current methods mainly follow a unilaterally augmented (UA) principle for the evaluation of each width, which induces the training unfairness of channels in supernet. In this article, we introduce a new supernet called Bilaterally Coupled Network (BCNet) to address this issue. In BCNet, each channel is fairly trained and responsible for the same amount of network widths, thus each network width can be evaluated more accurately. Besides, we propose to reduce the redundant search space and present the BCNetV2 as the enhanced supernet to ensure rigorous training fairness over channels. Furthermore, we leverage a stochastic complementary strategy for training the BCNet, and propose a prior initial population sampling method to boost the performance of the evolutionary search. We also propose a new open-source width search benchmark on macro structures named Channel-Bench-Macro for the better comparisons of the width search algorithms with MobileNet- and ResNet-like architectures. Extensive experiments on the benchmark datasets demonstrate that our method can achieve state-of-the-art performance 
650 4 |a Journal Article 
700 1 |a You, Shan  |e verfasserin  |4 aut 
700 1 |a Xie, Jiyang  |e verfasserin  |4 aut 
700 1 |a Wang, Fei  |e verfasserin  |4 aut 
700 1 |a Qian, Chen  |e verfasserin  |4 aut 
700 1 |a Zhang, Changshui  |e verfasserin  |4 aut 
700 1 |a Xu, Chang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 05. Juli, Seite 8936-8953  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:05  |g month:07  |g pages:8936-8953 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3226777  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 05  |c 07  |h 8936-8953