IC9600 : A Benchmark Dataset for Automatic Image Complexity Assessment

Image complexity (IC) is an essential visual perception for human beings to understand an image. However, explicitly evaluating the IC is challenging, and has long been overlooked since, on the one hand, the evaluation of IC is relatively subjective due to its dependence on human perception, and on...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 27. Juli, Seite 8577-8593
1. Verfasser: Feng, Tinglei (VerfasserIn)
Weitere Verfasser: Zhai, Yingjie, Yang, Jufeng, Liang, Jie, Fan, Deng-Ping, Zhang, Jing, Shao, Ling, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355202581
003 DE-627
005 20231226063840.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3232328  |2 doi 
028 5 2 |a pubmed24n1183.xml 
035 |a (DE-627)NLM355202581 
035 |a (NLM)37015512 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Feng, Tinglei  |e verfasserin  |4 aut 
245 1 0 |a IC9600  |b A Benchmark Dataset for Automatic Image Complexity Assessment 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2023 
500 |a Date Revised 06.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image complexity (IC) is an essential visual perception for human beings to understand an image. However, explicitly evaluating the IC is challenging, and has long been overlooked since, on the one hand, the evaluation of IC is relatively subjective due to its dependence on human perception, and on the other hand, the IC is semantic-dependent while real-world images are diverse. To facilitate the research of IC assessment in this deep learning era, we built the first, to our best knowledge, large-scale IC dataset with 9,600 well-annotated images. The images are of diverse areas such as abstract, paintings and real-world scenes, each of which is elaborately annotated by 17 human contributors. Powered by this high-quality dataset, we further provide a base model to predict the IC scores and estimate the complexity density maps in a weakly supervised way. The model is verified to be effective, and correlates well with human perception (with the Pearson correlation coefficient being 0.949). Last but not the least, we have empirically validated that the exploration of IC can provide auxiliary information and boost the performance of a wide range of computer vision tasks. The dataset and source code can be found at https://github.com/tinglyfeng/IC9600 
650 4 |a Journal Article 
700 1 |a Zhai, Yingjie  |e verfasserin  |4 aut 
700 1 |a Yang, Jufeng  |e verfasserin  |4 aut 
700 1 |a Liang, Jie  |e verfasserin  |4 aut 
700 1 |a Fan, Deng-Ping  |e verfasserin  |4 aut 
700 1 |a Zhang, Jing  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 27. Juli, Seite 8577-8593  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:27  |g month:07  |g pages:8577-8593 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3232328  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 27  |c 07  |h 8577-8593