High-Performance Transformer Tracking

Correlation has a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion method that considers the similarity between the template and the search region. However, the correlation operation is a local linear matching proc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 27. Juli, Seite 8507-8523
1. Verfasser: Chen, Xin (VerfasserIn)
Weitere Verfasser: Yan, Bin, Zhu, Jiawen, Lu, Huchuan, Ruan, Xiang, Wang, Dong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355202557
003 DE-627
005 20231226063840.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3232535  |2 doi 
028 5 2 |a pubmed24n1183.xml 
035 |a (DE-627)NLM355202557 
035 |a (NLM)37015509 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Xin  |e verfasserin  |4 aut 
245 1 0 |a High-Performance Transformer Tracking 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2023 
500 |a Date Revised 06.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Correlation has a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion method that considers the similarity between the template and the search region. However, the correlation operation is a local linear matching process, losing semantic information and easily falling into a local optimum, which may be the bottleneck in designing high-accuracy tracking algorithms. In this work, to determine whether a better feature fusion method exists than correlation, a novel attention-based feature fusion network, inspired by the transformer, is presented. This network effectively combines the template and search region features using attention mechanism. Specifically, the proposed method includes an ego-context augment module based on self-attention and a cross-feature augment module based on cross-attention. First, we present a transformer tracking (named TransT) method based on the Siamese-like feature extraction backbone, the designed attention-based fusion mechanism, and the classification and regression heads. Based on the TransT baseline, we also design a segmentation branch to generate the accurate mask. Finally, we propose a stronger version of TransT by extending it with a multi-template scheme and an IoU prediction head, named TransT-M. Experiments show that our TransT and TransT-M methods achieve promising results on seven popular benchmarks. Code and models are available at https://github.com/chenxin-dlut/TransT-M 
650 4 |a Journal Article 
700 1 |a Yan, Bin  |e verfasserin  |4 aut 
700 1 |a Zhu, Jiawen  |e verfasserin  |4 aut 
700 1 |a Lu, Huchuan  |e verfasserin  |4 aut 
700 1 |a Ruan, Xiang  |e verfasserin  |4 aut 
700 1 |a Wang, Dong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 27. Juli, Seite 8507-8523  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:27  |g month:07  |g pages:8507-8523 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3232535  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 27  |c 07  |h 8507-8523