Spatio-Temporal Visual Analysis of Turbulent Superstructures in Unsteady Flow

The large-scale motions in 3D turbulent channel flows, known as Turbulent Superstructures (TSS), play an essential role in the dynamics of small-scale structures within the turbulent boundary layer. However, as of today, there is no common agreement on the spatial and temporal relationships between...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 7 vom: 01. Juni, Seite 3346-3358
1. Verfasser: Ghaffari, Behdad (VerfasserIn)
Weitere Verfasser: Gatti, Davide, Westermann, Rudiger
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The large-scale motions in 3D turbulent channel flows, known as Turbulent Superstructures (TSS), play an essential role in the dynamics of small-scale structures within the turbulent boundary layer. However, as of today, there is no common agreement on the spatial and temporal relationships between these multiscale structures. We propose a novel space-time visualization technique for analyzing the temporal evolution of these multiscale structures in their spatial context and, thus, to further shed light on the conceptually different explanations of their dynamics. Since the temporal dynamics of TSS are believed to influence the structures in the turbulent boundary layer, we propose a combination of a 2D space-time velocity plot with an orthogonal 2D plot of projected 3D flow structures, which can interactively span the time and the space axis. Besides flow structures indicating the fluid motion, we propose showing the variations in derived fields as an additional source of explanation. The relationships between the structures in different spatial and temporal scales can be more effectively resolved by using various filtering operations and image registration algorithms. To reduce the information loss due to the non-injective nature of projection, spatial information is encoded into transparency or color. Since the proposed visualization is heavily demanding computational resources and memory bandwidth to stream unsteady flow fields and instantly compute derived 3D flow structures, the implementation exploits data compression, parallel computation capabilities, and high memory bandwidth on recent GPUs via the CUDA compute library
Beschreibung:Date Revised 28.06.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2022.3232367