Consensus Sparsity : Multi-context Sparse Image Representation via L∞-induced Matrix Variate

The sparsity is an attractive property that has been widely and intensively utilized in various image processing fields (e.g., robust image representation, image compression, image analysis, etc.). Its actual success owes to the exhaustive mining of the intrinsic (or homogenous) information from the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2022) vom: 27. Dez.
1. Verfasser: Zhou, Jianhang (VerfasserIn)
Weitere Verfasser: Zhang, Bob, Zeng, Shaoning
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355202425
003 DE-627
005 20231226063839.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3231083  |2 doi 
028 5 2 |a pubmed24n1183.xml 
035 |a (DE-627)NLM355202425 
035 |a (NLM)37015496 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Jianhang  |e verfasserin  |4 aut 
245 1 0 |a Consensus Sparsity  |b Multi-context Sparse Image Representation via L∞-induced Matrix Variate 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The sparsity is an attractive property that has been widely and intensively utilized in various image processing fields (e.g., robust image representation, image compression, image analysis, etc.). Its actual success owes to the exhaustive mining of the intrinsic (or homogenous) information from the whole data carrying redundant information. From the perspective of image representation, the sparsity can successfully find an underlying homogenous subspace from a collection of training data to represent a given test sample. The famous sparse representation (SR) and its variants embed the sparsity by representing the test sample using a linear combination of training samples with L0-norm regularization and L1-norm regularization. However, although these state-of-the-art methods achieve powerful and robust performances, the sparsity is not fully exploited on the image representation in the following three aspects: 1) the within-sample sparsity, 2) the between-sample sparsity, and 3) the image structural sparsity. In this paper, to make the above-mentioned multi-context sparsity properties agree and simultaneously learned in one model, we propose the concept of consensus sparsity (Con-sparsity) and correspondingly build a multi-context sparse image representation (MCSIR) framework to realize this. We theoretically prove that the consensus sparsity can be achieved by the L∞-induced matrix variate based on the Bayesian inference. Extensive experiments and comparisons with the state-of-the-art methods (including deep learning) are performed to demonstrate the promising performance and property of the proposed consensus sparsity 
650 4 |a Journal Article 
700 1 |a Zhang, Bob  |e verfasserin  |4 aut 
700 1 |a Zeng, Shaoning  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2022) vom: 27. Dez.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2022  |g day:27  |g month:12 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3231083  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2022  |b 27  |c 12