Orientational Distribution Learning With Hierarchical Spatial Attention for Open Set Recognition

Open set recognition (OSR) aims to correctly recognize the known classes and reject the unknown classes for increasing the reliability of the recognition system. The distance-based loss is often employed in deep neural networks-based OSR methods to constrain the latent representation of known classe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 09. Juli, Seite 8757-8772
1. Verfasser: Liu, Zhun-Ga (VerfasserIn)
Weitere Verfasser: Fu, Yi-Min, Pan, Quan, Zhang, Zuo-Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Open set recognition (OSR) aims to correctly recognize the known classes and reject the unknown classes for increasing the reliability of the recognition system. The distance-based loss is often employed in deep neural networks-based OSR methods to constrain the latent representation of known classes. However, the optimization is usually conducted using the nondirectional euclidean distance in a single feature space without considering the potential impact of spatial distribution. To address this problem, we propose orientational distribution learning (ODL) with hierarchical spatial attention for OSR. In ODL, the spatial distribution of feature representation is optimized orientationally to increase the discriminability of decision boundaries for open set recognition. Then, a hierarchical spatial attention mechanism is proposed to assist ODL to capture the global distribution dependencies in the feature space based on spatial relationships. Moreover, a composite feature space is constructed to integrate the features from different layers and different mapping approaches, and it can well enrich the representation information. Finally, a decision-level fusion method is developed to combine the composite feature space and the naive feature space for producing a more comprehensive classification result. The effectiveness of ODL has been demonstrated on various benchmark datasets, and ODL achieves state-of-the-art performance
Beschreibung:Date Completed 06.06.2023
Date Revised 06.06.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2022.3227913