CMOS-GAN : Semi-supervised Generative Adversarial Model for Cross-Modality Face Image Synthesis

Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both mo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2022) vom: 07. Dez.
1. Verfasser: Yu, Shikang (VerfasserIn)
Weitere Verfasser: Han, Hu, Shan, Shiguang, Chen, Xilin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both modalities. However, paired data can be difficult to acquire, while unpaired data commonly exist. In this paper, we propose a novel semi-supervised cross-modality synthesis method (namely CMOS-GAN), which can leverage both paired and unpaired face images to learn a robust cross-modality synthesis model. Specifically, CMOS-GAN uses a generator of encoder-decoder architecture for new modality synthesis. We leverage pixel-wise loss, adversarial loss, classification loss, and face feature loss to exploit the information from both paired multi-modality face images and unpaired face images for model learning. In addition, since we expect the synthetic new modality can also be helpful for improving face recognition accuracy, we further use a modified triplet loss to retain the discriminative features of the subject in the synthetic modality. Experiments on three cross-modality face synthesis tasks (NIR-to-VIS, RGB-to-depth, and sketch-to-photo) show the effectiveness of the proposed approach compared with the state-of-the-art. In addition, we also collect a large-scale RGB-D dataset (VIPL-MumoFace-3K) for the RGB-to-depth synthesis task. We plan to open-source our code and VIPL-MumoFace-3K dataset to the community
Beschreibung:Date Revised 04.04.2023
published: Print-Electronic
Citation Status Publisher
ISSN:1941-0042
DOI:10.1109/TIP.2022.3226413