SMAM : Self and Mutual Adaptive Matching for Skeleton-Based Few-Shot Action Recognition

This paper focuses on skeleton-based few-shot action recognition. Since skeleton is essentially a sparse representation of human action, the feature maps extracted from it, through a standard encoder network in the few-shot condition, may not be sufficiently discriminative for some action sequences...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 06., Seite 392-402
1. Verfasser: Li, Zhiheng (VerfasserIn)
Weitere Verfasser: Gong, Xuyuan, Song, Ran, Duan, Peng, Liu, Jun, Zhang, Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This paper focuses on skeleton-based few-shot action recognition. Since skeleton is essentially a sparse representation of human action, the feature maps extracted from it, through a standard encoder network in the few-shot condition, may not be sufficiently discriminative for some action sequences that look partially similar to each other. To address this issue, we propose a self and mutual adaptive matching (SMAM) module to convert such feature maps into more discriminative feature vectors. Our method, named as SMAM-Net, first leverages both the temporal information associated with each individual skeleton joint and the spatial relationship among them for feature extraction. Then, the SMAM module adaptively measures the similarity between labeled and query samples and further carries out feature matching within the query set to distinguish similar skeletons of various action categories. Experimental results show that the SMAM-Net outperforms other baselines on the large-scale NTU RGB + D 120 dataset in the tasks of one-shot and five-shot action recognition. We also report our results on smaller datasets including NTU RGB + D 60, SYSU and PKU-MMD to demonstrate that our method is reliable and generalises well on different datasets. Codes and the pretrained SMAM-Net will be made publicly available
Beschreibung:Date Revised 04.04.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2022.3226410