|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM355202212 |
003 |
DE-627 |
005 |
20250304150740.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2022.3226414
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1183.xml
|
035 |
|
|
|a (DE-627)NLM355202212
|
035 |
|
|
|a (NLM)37015476
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Le
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Instance Motion Tendency Learning for Video Panoptic Segmentation
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 04.04.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a Video panoptic segmentation is an important but challenging task in computer vision. It not only performs panoptic segmentation of each frame, but also associates the same instance across adjacent frames. Due to the lack of temporal coherence modeling, most existing approaches often generate identity switches during instance association, and they cannot handle ambiguous segmentation boundaries caused by motion blur. To address these difficult issues, we introduce a simple yet effective Instance Motion Tendency Network (IMTNet) for video panoptic segmentation. It learns a global motion tendency map for instance association, and a hierarchical classifier for motion boundary refinement. Specifically, a Global Motion Tendency Module (GMTM) is designed to learn robust motion features from optical flows, which can directly associate each instance in the previous frame to the corresponding instance in the current frame. In addition, we propose a Motion Boundary Refinement Module (MBRM) to learn a hierarchical classifier to handle the boundary pixels of moving targets, which can effectively revise the inaccurate segmentation predictions. Experimental results on both Cityscapes and Cityscapes-VPS datasets show that our IMTNet outperforms most state-of-the-art approaches
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Liu, Hongzhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Sanping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tang, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hua, Gang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g PP(2022) vom: 07. Dez.
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnas
|
773 |
1 |
8 |
|g volume:PP
|g year:2022
|g day:07
|g month:12
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2022.3226414
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d PP
|j 2022
|b 07
|c 12
|