Instance Motion Tendency Learning for Video Panoptic Segmentation

Video panoptic segmentation is an important but challenging task in computer vision. It not only performs panoptic segmentation of each frame, but also associates the same instance across adjacent frames. Due to the lack of temporal coherence modeling, most existing approaches often generate identit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2022) vom: 07. Dez.
1. Verfasser: Wang, Le (VerfasserIn)
Weitere Verfasser: Liu, Hongzhen, Zhou, Sanping, Tang, Wei, Hua, Gang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM355202212
003 DE-627
005 20250304150740.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3226414  |2 doi 
028 5 2 |a pubmed25n1183.xml 
035 |a (DE-627)NLM355202212 
035 |a (NLM)37015476 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Le  |e verfasserin  |4 aut 
245 1 0 |a Instance Motion Tendency Learning for Video Panoptic Segmentation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Video panoptic segmentation is an important but challenging task in computer vision. It not only performs panoptic segmentation of each frame, but also associates the same instance across adjacent frames. Due to the lack of temporal coherence modeling, most existing approaches often generate identity switches during instance association, and they cannot handle ambiguous segmentation boundaries caused by motion blur. To address these difficult issues, we introduce a simple yet effective Instance Motion Tendency Network (IMTNet) for video panoptic segmentation. It learns a global motion tendency map for instance association, and a hierarchical classifier for motion boundary refinement. Specifically, a Global Motion Tendency Module (GMTM) is designed to learn robust motion features from optical flows, which can directly associate each instance in the previous frame to the corresponding instance in the current frame. In addition, we propose a Motion Boundary Refinement Module (MBRM) to learn a hierarchical classifier to handle the boundary pixels of moving targets, which can effectively revise the inaccurate segmentation predictions. Experimental results on both Cityscapes and Cityscapes-VPS datasets show that our IMTNet outperforms most state-of-the-art approaches 
650 4 |a Journal Article 
700 1 |a Liu, Hongzhen  |e verfasserin  |4 aut 
700 1 |a Zhou, Sanping  |e verfasserin  |4 aut 
700 1 |a Tang, Wei  |e verfasserin  |4 aut 
700 1 |a Hua, Gang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2022) vom: 07. Dez.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:PP  |g year:2022  |g day:07  |g month:12 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3226414  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2022  |b 07  |c 12