Reference-Based Image and Video Super-Resolution via C2-Matching

Reference-based Super-Resolution (Ref-SR) has recently emerged as a promising paradigm to enhance a low-resolution (LR) input image or video by introducing an additional high-resolution (HR) reference image. Existing Ref-SR methods mostly rely on implicit correspondence matching to borrow HR texture...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 20. Juli, Seite 8874-8887
1. Verfasser: Jiang, Yuming (VerfasserIn)
Weitere Verfasser: Chan, Kelvin C K, Wang, Xintao, Loy, Chen Change, Liu, Ziwei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355201771
003 DE-627
005 20231226063839.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3231089  |2 doi 
028 5 2 |a pubmed24n1183.xml 
035 |a (DE-627)NLM355201771 
035 |a (NLM)37015431 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Yuming  |e verfasserin  |4 aut 
245 1 0 |a Reference-Based Image and Video Super-Resolution via C2-Matching 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2023 
500 |a Date Revised 06.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Reference-based Super-Resolution (Ref-SR) has recently emerged as a promising paradigm to enhance a low-resolution (LR) input image or video by introducing an additional high-resolution (HR) reference image. Existing Ref-SR methods mostly rely on implicit correspondence matching to borrow HR textures from reference images to compensate for the information loss in input images. However, performing local transfer is difficult because of two gaps between input and reference images: the transformation gap (e.g., scale and rotation) and the resolution gap (e.g., HR and LR). To tackle these challenges, we propose C2-Matching in this work, which performs explicit robust matching crossing transformation and resolution. 1) To bridge the transformation gap, we propose a contrastive correspondence network, which learns transformation-robust correspondences using augmented views of the input image. 2) To address the resolution gap, we adopt teacher-student correlation distillation, which distills knowledge from the easier HR-HR matching to guide the more ambiguous LR-HR matching. 3) Finally, we design a dynamic aggregation module to address the potential misalignment issue between input images and reference images. In addition, to faithfully evaluate the performance of Reference-based Image Super-Resolution (Ref Image SR) under a realistic setting, we contribute the Webly-Referenced SR (WR-SR) dataset, mimicking the practical usage scenario. We also extend C2-Matching to Reference-based Video Super-Resolution (Ref VSR) task, where an image taken in a similar scene serves as the HR reference image. Extensive experiments demonstrate that our proposed C2-Matching significantly outperforms state of the arts by up to 0.7 dB on the standard CUFED5 benchmark and also boosts the performance of video super-resolution by incorporating the C2-Matching component into Video SR pipelines. Notably, C2-Matching also shows great generalizability on WR-SR dataset as well as robustness across large scale and rotation transformations. Codes and datasets are available at https://github.com/yumingj/C2-Matching 
650 4 |a Journal Article 
700 1 |a Chan, Kelvin C K  |e verfasserin  |4 aut 
700 1 |a Wang, Xintao  |e verfasserin  |4 aut 
700 1 |a Loy, Chen Change  |e verfasserin  |4 aut 
700 1 |a Liu, Ziwei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 20. Juli, Seite 8874-8887  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:20  |g month:07  |g pages:8874-8887 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3231089  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 20  |c 07  |h 8874-8887