Knowledge-Enriched Attention Network With Group-Wise Semantic for Visual Storytelling

As a technically challenging topic, visual storytelling aims at generating an imaginary and coherent story with narrative multi-sentences from a group of relevant images. Existing methods often generate direct and rigid descriptions of apparent image-based contents, because they are not capable of e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 20. Juli, Seite 8634-8645
1. Verfasser: Li, Tengpeng (VerfasserIn)
Weitere Verfasser: Wang, Hanli, He, Bin, Chen, Chang Wen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355201755
003 DE-627
005 20231226063839.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3230934  |2 doi 
028 5 2 |a pubmed24n1183.xml 
035 |a (DE-627)NLM355201755 
035 |a (NLM)37015429 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Tengpeng  |e verfasserin  |4 aut 
245 1 0 |a Knowledge-Enriched Attention Network With Group-Wise Semantic for Visual Storytelling 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2023 
500 |a Date Revised 06.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a As a technically challenging topic, visual storytelling aims at generating an imaginary and coherent story with narrative multi-sentences from a group of relevant images. Existing methods often generate direct and rigid descriptions of apparent image-based contents, because they are not capable of exploring implicit information beyond images. Hence, these schemes could not capture consistent dependencies from holistic representation, impairing the generation of reasonable and fluent stories. To address these problems, a novel knowledge-enriched attention network with group-wise semantic model is proposed. Three main novel components are designed and supported by substantial experiments to reveal practical advantages. First, a knowledge-enriched attention network is designed to extract implicit concepts from external knowledge system, and these concepts are followed by a cascade cross-modal attention mechanism to characterize imaginative and concrete representations. Second, a group-wise semantic module with second-order pooling is developed to explore the globally consistent guidance. Third, a unified one-stage story generation model with encoder-decoder structure is proposed to simultaneously train and infer the knowledge-enriched attention network, group-wise semantic module and multi-modal story generation decoder in an end-to-end fashion. Substantial experiments on the visual storytelling datasets with both objective and subjective evaluation metrics demonstrate the superior performance of the proposed scheme as compared with other state-of-the-art methods. The source code of this work can be found in https://mic.tongji.edu.cn 
650 4 |a Journal Article 
700 1 |a Wang, Hanli  |e verfasserin  |4 aut 
700 1 |a He, Bin  |e verfasserin  |4 aut 
700 1 |a Chen, Chang Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 20. Juli, Seite 8634-8645  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:20  |g month:07  |g pages:8634-8645 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3230934  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 20  |c 07  |h 8634-8645