Multilevel Spatial-Temporal Excited Graph Network for Skeleton-based Action Recognition

The ability to capture joint connections in complicated motion is essential for skeleton-based action recognition. However, earlier approaches may not be able to fully explore this connection in either the spatial or temporal dimension due to fixed or single-level topological structures and insuffic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2022) vom: 22. Dez.
1. Verfasser: Zhu, Yisheng (VerfasserIn)
Weitere Verfasser: Shuai, Hui, Liu, Guangcan, Liu, Qingshan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355201364
003 DE-627
005 20231226063838.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3230249  |2 doi 
028 5 2 |a pubmed24n1183.xml 
035 |a (DE-627)NLM355201364 
035 |a (NLM)37015390 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Yisheng  |e verfasserin  |4 aut 
245 1 0 |a Multilevel Spatial-Temporal Excited Graph Network for Skeleton-based Action Recognition 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The ability to capture joint connections in complicated motion is essential for skeleton-based action recognition. However, earlier approaches may not be able to fully explore this connection in either the spatial or temporal dimension due to fixed or single-level topological structures and insufficient temporal modeling. In this paper, we propose a novel multilevel spatial-temporal excited graph network (ML-STGNet) to address the above problems. In the spatial configuration, we decouple the learning of the human skeleton into general and individual graphs by designing a multilevel graph convolution (ML-GCN) network and a spatial data-driven excitation (SDE) module, respectively. ML-GCN leverages joint-level, part-level, and body-level graphs to comprehensively model the hierarchical relations of a human body. Based on this, SDE is further introduced to handle the diverse joint relations of different samples in a data-dependent way. This decoupling approach not only increases the flexibility of the model for graph construction but also enables the generality to adapt to various data samples. In the temporal configuration, we apply the concept of temporal difference to the human skeleton and design an efficient temporal motion excitation (TME) module to highlight the motion-sensitive features. Furthermore, a simplified multiscale temporal convolution (MS-TCN) network is introduced to enrich the expression ability of temporal features. Extensive experiments on the four popular datasets NTU-RGB+D, NTU-RGB+D 120, Kinetics Skeleton 400, and Toyota Smarthome demonstrate that ML-STGNet gains considerable improvements over the existing state of the art 
650 4 |a Journal Article 
700 1 |a Shuai, Hui  |e verfasserin  |4 aut 
700 1 |a Liu, Guangcan  |e verfasserin  |4 aut 
700 1 |a Liu, Qingshan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2022) vom: 22. Dez.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2022  |g day:22  |g month:12 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3230249  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2022  |b 22  |c 12