|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM355201356 |
003 |
DE-627 |
005 |
20231226063838.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2022.3230245
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1183.xml
|
035 |
|
|
|a (DE-627)NLM355201356
|
035 |
|
|
|a (NLM)37015389
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Song, Jianwen
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Super-resolution phase retrieval network for single-pattern structured light 3D imaging
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 04.04.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a Structured light 3D imaging is often used for obtaining accurate 3D information via phase retrieval. Single-pattern structured light 3D imaging is much faster than multi-pattern versions. Current phase retrieval methods for single-pattern structured light 3D imaging are however not accurate enough. Besides, the projector resolution in a structured light 3D imaging system is expensive to improve due to hardware costs. To address the issues of low accuracy and low resolution of single-pattern structured light 3D imaging, this work proposes a super-resolution phase retrieval network (SRPRNet). Specifically, a phase-shifting module is proposed to extract multi-scale features with different phase shifts, and a refinement and super-resolution module is proposed to obtain refined and super-resolution phase components. After phase demodulation and unwrapping, high-resolution absolute phase is obtained. A sine shifting loss and a cosine shifting loss are also introduced to form the regularization term of the loss function. As far as can be ascertained, the proposed SRPRNet is the first network for super-resolution phase retrieval by using a single pattern, and it can also be used for standard-resolution phase retrieval. Experimental results on three datasets show that SRPRNet achieves state-of-the-art performance on 1×, 2×, and 4× super-resolution phase retrieval tasks
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Liu, Kai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sowmya, Arcot
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Changming
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g PP(2022) vom: 22. Dez.
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:PP
|g year:2022
|g day:22
|g month:12
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2022.3230245
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d PP
|j 2022
|b 22
|c 12
|