Super-resolution phase retrieval network for single-pattern structured light 3D imaging

Structured light 3D imaging is often used for obtaining accurate 3D information via phase retrieval. Single-pattern structured light 3D imaging is much faster than multi-pattern versions. Current phase retrieval methods for single-pattern structured light 3D imaging are however not accurate enough....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2022) vom: 22. Dez.
1. Verfasser: Song, Jianwen (VerfasserIn)
Weitere Verfasser: Liu, Kai, Sowmya, Arcot, Sun, Changming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355201356
003 DE-627
005 20231226063838.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3230245  |2 doi 
028 5 2 |a pubmed24n1183.xml 
035 |a (DE-627)NLM355201356 
035 |a (NLM)37015389 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Jianwen  |e verfasserin  |4 aut 
245 1 0 |a Super-resolution phase retrieval network for single-pattern structured light 3D imaging 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Structured light 3D imaging is often used for obtaining accurate 3D information via phase retrieval. Single-pattern structured light 3D imaging is much faster than multi-pattern versions. Current phase retrieval methods for single-pattern structured light 3D imaging are however not accurate enough. Besides, the projector resolution in a structured light 3D imaging system is expensive to improve due to hardware costs. To address the issues of low accuracy and low resolution of single-pattern structured light 3D imaging, this work proposes a super-resolution phase retrieval network (SRPRNet). Specifically, a phase-shifting module is proposed to extract multi-scale features with different phase shifts, and a refinement and super-resolution module is proposed to obtain refined and super-resolution phase components. After phase demodulation and unwrapping, high-resolution absolute phase is obtained. A sine shifting loss and a cosine shifting loss are also introduced to form the regularization term of the loss function. As far as can be ascertained, the proposed SRPRNet is the first network for super-resolution phase retrieval by using a single pattern, and it can also be used for standard-resolution phase retrieval. Experimental results on three datasets show that SRPRNet achieves state-of-the-art performance on 1×, 2×, and 4× super-resolution phase retrieval tasks 
650 4 |a Journal Article 
700 1 |a Liu, Kai  |e verfasserin  |4 aut 
700 1 |a Sowmya, Arcot  |e verfasserin  |4 aut 
700 1 |a Sun, Changming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2022) vom: 22. Dez.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2022  |g day:22  |g month:12 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3230245  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2022  |b 22  |c 12