Differentially Private Graph Neural Networks for Whole-Graph Classification

Graph Neural Networks (GNNs) have established themselves as state-of-the-art for many machine learning applications such as the analysis of social and medical networks. Several among these datasets contain privacy-sensitive data. Machine learning with differential privacy is a promising technique to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 6 vom: 12. Juni, Seite 7308-7318
1. Verfasser: Mueller, Tamara T (VerfasserIn)
Weitere Verfasser: Paetzold, Johannes C, Prabhakar, Chinmay, Usynin, Dmitrii, Rueckert, Daniel, Kaissis, Georgios
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355201178
003 DE-627
005 20231226063838.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3228315  |2 doi 
028 5 2 |a pubmed24n1183.xml 
035 |a (DE-627)NLM355201178 
035 |a (NLM)37015371 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mueller, Tamara T  |e verfasserin  |4 aut 
245 1 0 |a Differentially Private Graph Neural Networks for Whole-Graph Classification 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.05.2023 
500 |a Date Revised 07.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Graph Neural Networks (GNNs) have established themselves as state-of-the-art for many machine learning applications such as the analysis of social and medical networks. Several among these datasets contain privacy-sensitive data. Machine learning with differential privacy is a promising technique to allow deriving insight from sensitive data while offering formal guarantees of privacy protection. However, the differentially private training of GNNs has so far remained under-explored due to the challenges presented by the intrinsic structural connectivity of graphs. In this work, we introduce a framework for differential private graph-level classification. Our method is applicable to graph deep learning on multi-graph datasets and relies on differentially private stochastic gradient descent (DP-SGD). We show results on a variety of datasets and evaluate the impact of different GNN architectures and training hyperparameters on model performance for differentially private graph classification, as well as the scalability of the method on a large medical dataset. Our experiments show that DP-SGD can be applied to graph classification tasks with reasonable utility losses. Furthermore, we apply explainability techniques to assess whether similar representations are learned in the private and non-private settings. Our results can also function as robust baselines for future work in this area 
650 4 |a Journal Article 
700 1 |a Paetzold, Johannes C  |e verfasserin  |4 aut 
700 1 |a Prabhakar, Chinmay  |e verfasserin  |4 aut 
700 1 |a Usynin, Dmitrii  |e verfasserin  |4 aut 
700 1 |a Rueckert, Daniel  |e verfasserin  |4 aut 
700 1 |a Kaissis, Georgios  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 6 vom: 12. Juni, Seite 7308-7318  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:6  |g day:12  |g month:06  |g pages:7308-7318 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3228315  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 6  |b 12  |c 06  |h 7308-7318