Rethinking and Improving Feature Pyramids for One-Stage Referring Expression Comprehension

Referring Expression Comprehension (REC) is an important task in the vision-and-language community, since it is an essential step for many cross-modal tasks such as VQA, image retrieval and image caption. To obtain a better trade-off between speed and accuracy, existing researches usually follow a o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 06., Seite 854-864
1. Verfasser: Suo, Wei (VerfasserIn)
Weitere Verfasser: Sun, Mengyang, Wang, Peng, Zhang, Yanning, Wu, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM355201070
003 DE-627
005 20250509103748.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3227466  |2 doi 
028 5 2 |a pubmed25n1365.xml 
035 |a (DE-627)NLM355201070 
035 |a (NLM)37015361 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Suo, Wei  |e verfasserin  |4 aut 
245 1 0 |a Rethinking and Improving Feature Pyramids for One-Stage Referring Expression Comprehension 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Referring Expression Comprehension (REC) is an important task in the vision-and-language community, since it is an essential step for many cross-modal tasks such as VQA, image retrieval and image caption. To obtain a better trade-off between speed and accuracy, existing researches usually follow a one-stage paradigm, where this task can be considered as a language-conditioned object detection task. Meanwhile, previous one-stage REC frameworks provide many different research perspectives, such as the strategies of fusion, the stage of fusion and the design of detection head. Surprisingly, these works mostly ignore the value of integrating multi-level features and even only apply single-scale features to locate the target. In this paper, we focus on rethinking and improving feature pyramids for one-stage REC. By experimental validations, we first prove that although multi-scale fusion is an effective approach for improving performance, the mature neck structures from object detection (e.g., FPN, BFN and HRFPN) have a limited impact on this task. Further, we visualize the outputs of FPN and find the underlying reason is that these coarse-grained FPN fusion strategies suffer from semantic ambiguity problem. Based on the above insights, we propose a new Language-Guided FPN (LG-FPN) method, which can dynamically allocate and select the fine-grained information by stacking language-gate and union-gate. A large number of contrastive and ablative experiments show that our LG-FPN is an effective and reliable module that can adapt to different visual backbones, fusion strategies and detection heads. Finally, our method achieves state-of-the-art performance on four referring expression datasets 
650 4 |a Journal Article 
700 1 |a Sun, Mengyang  |e verfasserin  |4 aut 
700 1 |a Wang, Peng  |e verfasserin  |4 aut 
700 1 |a Zhang, Yanning  |e verfasserin  |4 aut 
700 1 |a Wu, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 06., Seite 854-864  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:32  |g year:2023  |g day:06  |g pages:854-864 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3227466  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 06  |h 854-864