GradMDM : Adversarial Attack on Dynamic Networks

Dynamic neural networks can greatly reduce computation redundancy without compromising accuracy by adapting their structures based on the input. In this paper, we explore the robustness of dynamic neural networks against energy-oriented attacks targeted at reducing their efficiency. Specifically, we...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 9 vom: 29. Sept., Seite 11374-11381
1. Verfasser: Pan, Jianhong (VerfasserIn)
Weitere Verfasser: Foo, Lin Geng, Zheng, Qichen, Fan, Zhipeng, Rahmani, Hossein, Ke, Qiuhong, Liu, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355198746
003 DE-627
005 20231226063835.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3263619  |2 doi 
028 5 2 |a pubmed24n1183.xml 
035 |a (DE-627)NLM355198746 
035 |a (NLM)37015128 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pan, Jianhong  |e verfasserin  |4 aut 
245 1 0 |a GradMDM  |b Adversarial Attack on Dynamic Networks 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.08.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Dynamic neural networks can greatly reduce computation redundancy without compromising accuracy by adapting their structures based on the input. In this paper, we explore the robustness of dynamic neural networks against energy-oriented attacks targeted at reducing their efficiency. Specifically, we attack dynamic models with our novel algorithm GradMDM. GradMDM is a technique that adjusts the direction and the magnitude of the gradients to effectively find a small perturbation for each input, that will activate more computational units of dynamic models during inference. We evaluate GradMDM on multiple datasets and dynamic models, where it outperforms previous energy-oriented attack techniques, significantly increasing computation complexity while reducing the perceptibility of the perturbations https://github.com/lingengfoo/GradMDM 
650 4 |a Journal Article 
700 1 |a Foo, Lin Geng  |e verfasserin  |4 aut 
700 1 |a Zheng, Qichen  |e verfasserin  |4 aut 
700 1 |a Fan, Zhipeng  |e verfasserin  |4 aut 
700 1 |a Rahmani, Hossein  |e verfasserin  |4 aut 
700 1 |a Ke, Qiuhong  |e verfasserin  |4 aut 
700 1 |a Liu, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 9 vom: 29. Sept., Seite 11374-11381  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:9  |g day:29  |g month:09  |g pages:11374-11381 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3263619  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 9  |b 29  |c 09  |h 11374-11381