The integrated nested Laplace approximation applied to spatial log-Gaussian Cox process models

© 2022 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 5 vom: 24., Seite 1128-1151
1. Verfasser: Flagg, Kenneth (VerfasserIn)
Weitere Verfasser: Hoegh, Andrew
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Review Bayesian hierarchical model INLA log-Gaussian Cox process spatial point process spatial prediction
LEADER 01000naa a22002652 4500
001 NLM355144247
003 DE-627
005 20231226063727.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.2023116  |2 doi 
028 5 2 |a pubmed24n1183.xml 
035 |a (DE-627)NLM355144247 
035 |a (NLM)37009597 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Flagg, Kenneth  |e verfasserin  |4 aut 
245 1 4 |a The integrated nested Laplace approximation applied to spatial log-Gaussian Cox process models 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Spatial point process models are theoretically useful for mapping discrete events, such as plant or animal presence, across space; however, the computational complexity of fitting these models is often a barrier to their practical use. The log-Gaussian Cox process (LGCP) is a point process driven by a latent Gaussian field, and recent advances have made it possible to fit Bayesian LGCP models using approximate methods that facilitate rapid computation. These advances include the integrated nested Laplace approximation (INLA) with a stochastic partial differential equations (SPDE) approach to sparsely approximate the Gaussian field and an extension using pseudodata with a Poisson response. To help link the theoretical results to statistical practice, we provide an overview of INLA for point process data and then illustrate their implementation using freely available data. The analyzed datasets include both a completely observed spatial field and an incomplete data situation. Our well-commented R code is shared in the online supplement. Our intent is to make these methods accessible to the practitioner of spatial statistics without requiring deep knowledge of point process theory 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Bayesian hierarchical model 
650 4 |a INLA 
650 4 |a log-Gaussian Cox process 
650 4 |a spatial point process 
650 4 |a spatial prediction 
700 1 |a Hoegh, Andrew  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 5 vom: 24., Seite 1128-1151  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:50  |g year:2023  |g number:5  |g day:24  |g pages:1128-1151 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.2023116  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 5  |b 24  |h 1128-1151