A Nodal Immersed Finite Element-Finite Difference Method

The immersed finite element-finite difference (IFED) method is a computational approach to modeling interactions between a fluid and an immersed structure. The IFED method uses a finite element (FE) method to approximate the stresses, forces, and structural deformations on a structural mesh and a fi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 477(2023) vom: 15. März
1. Verfasser: Wells, David (VerfasserIn)
Weitere Verfasser: Vadala-Roth, Ben, Lee, Jae H, Griffith, Boyce E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Immersed boundary method finite differences finite elements fluid-structure interaction mass lumping nodal quadrature
LEADER 01000caa a22002652 4500
001 NLM355124610
003 DE-627
005 20240916232025.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcp.2022.111890  |2 doi 
028 5 2 |a pubmed24n1535.xml 
035 |a (DE-627)NLM355124610 
035 |a (NLM)37007629 
035 |a (PII)111890 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wells, David  |e verfasserin  |4 aut 
245 1 2 |a A Nodal Immersed Finite Element-Finite Difference Method 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The immersed finite element-finite difference (IFED) method is a computational approach to modeling interactions between a fluid and an immersed structure. The IFED method uses a finite element (FE) method to approximate the stresses, forces, and structural deformations on a structural mesh and a finite difference (FD) method to approximate the momentum and enforce incompressibility of the entire fluid-structure system on a Cartesian grid. The fundamental approach used by this method follows the immersed boundary framework for modeling fluid-structure interaction (FSI), in which a force spreading operator prolongs structural forces to a Cartesian grid, and a velocity interpolation operator restricts a velocity field defined on that grid back onto the structural mesh. With an FE structural mechanics framework, force spreading first requires that the force itself be projected onto the finite element space. Similarly, velocity interpolation requires projecting velocity data onto the FE basis functions. Consequently, evaluating either coupling operator requires solving a matrix equation at every time step. Mass lumping, in which the projection matrices are replaced by diagonal approximations, has the potential to accelerate this method considerably. This paper provides both numerical and computational analyses of the effects of this replacement for evaluating the force projection and for the IFED coupling operators. Constructing the coupling operators also requires determining the locations on the structure mesh where the forces and velocities are sampled. Here we show that sampling the forces and velocities at the nodes of the structural mesh is equivalent to using lumped mass matrices in the IFED coupling operators. A key theoretical result of our analysis is that if both of these approaches are used together, the IFED method permits the use of lumped mass matrices derived from nodal quadrature rules for any standard interpolatory element. This is different from standard FE methods, which require specialized treatments to accommodate mass lumping with higher-order shape functions. Our theoretical results are confirmed by numerical benchmarks, including standard solid mechanics tests and examination of a dynamic model of a bioprosthetic heart valve 
650 4 |a Journal Article 
650 4 |a Immersed boundary method 
650 4 |a finite differences 
650 4 |a finite elements 
650 4 |a fluid-structure interaction 
650 4 |a mass lumping 
650 4 |a nodal quadrature 
700 1 |a Vadala-Roth, Ben  |e verfasserin  |4 aut 
700 1 |a Lee, Jae H  |e verfasserin  |4 aut 
700 1 |a Griffith, Boyce E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 477(2023) vom: 15. März  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:477  |g year:2023  |g day:15  |g month:03 
856 4 0 |u http://dx.doi.org/10.1016/j.jcp.2022.111890  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 477  |j 2023  |b 15  |c 03