Multiplatform untargeted metabolomics

© 2023 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 61(2023), 12 vom: 08. Dez., Seite 628-653
1. Verfasser: Jeppesen, Micah J (VerfasserIn)
Weitere Verfasser: Powers, Robert
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article Review Research Support, N.I.H., Extramural mass spectrometry metabolite assignment metabolome coverage metabolomics multiplatform nuclear magnetic resonance
LEADER 01000caa a22002652 4500
001 NLM355106280
003 DE-627
005 20240320233042.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/mrc.5350  |2 doi 
028 5 2 |a pubmed24n1337.xml 
035 |a (DE-627)NLM355106280 
035 |a (NLM)37005774 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jeppesen, Micah J  |e verfasserin  |4 aut 
245 1 0 |a Multiplatform untargeted metabolomics 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.11.2023 
500 |a Date Revised 20.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. 
520 |a Metabolomics samples like human urine or serum contain upwards of a few thousand metabolites, but individual analytical techniques can only characterize a few hundred metabolites at best. The uncertainty in metabolite identification commonly encountered in untargeted metabolomics adds to this low coverage problem. A multiplatform (multiple analytical techniques) approach can improve upon the number of metabolites reliably detected and correctly assigned. This can be further improved by applying synergistic sample preparation along with the use of combinatorial or sequential non-destructive and destructive techniques. Similarly, peak detection and metabolite identification strategies that employ multiple probabilistic approaches have led to better annotation decisions. Applying these techniques also addresses the issues of reproducibility found in single platform methods. Nevertheless, the analysis of large data sets from disparate analytical techniques presents unique challenges. While the general data processing workflow is similar across multiple platforms, many software packages are only fully capable of processing data types from a single analytical instrument. Traditional statistical methods such as principal component analysis were not designed to handle multiple, distinct data sets. Instead, multivariate analysis requires multiblock or other model types for understanding the contribution from multiple instruments. This review summarizes the advantages, limitations, and recent achievements of a multiplatform approach to untargeted metabolomics 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a mass spectrometry 
650 4 |a metabolite assignment 
650 4 |a metabolome coverage 
650 4 |a metabolomics 
650 4 |a multiplatform 
650 4 |a nuclear magnetic resonance 
700 1 |a Powers, Robert  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Magnetic resonance in chemistry : MRC  |d 1985  |g 61(2023), 12 vom: 08. Dez., Seite 628-653  |w (DE-627)NLM098179667  |x 1097-458X  |7 nnns 
773 1 8 |g volume:61  |g year:2023  |g number:12  |g day:08  |g month:12  |g pages:628-653 
856 4 0 |u http://dx.doi.org/10.1002/mrc.5350  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 61  |j 2023  |e 12  |b 08  |c 12  |h 628-653