|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM355059053 |
003 |
DE-627 |
005 |
20231226063540.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.3c00189
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1183.xml
|
035 |
|
|
|a (DE-627)NLM355059053
|
035 |
|
|
|a (NLM)37001023
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Khokhar, Vaishali
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Constituent- and Composition-Dependent Surfactant Aggregation in (Lanthanide Salt + Urea) Deep Eutectic Solvents
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.04.2023
|
500 |
|
|
|a Date Revised 11.04.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Due to the ease of tailoring the physicochemical properties by simply changing a constituent or composition, deep eutectic solvents (DESs) possess widely varying capabilities for surfactant self-assembly that could depend on the surfactant headgroup charge. The self-aggregation process of three surfactants, sodium dodecylsulfate (SDS), cetyltrimethylammonium bromide (CTAB), and Triton X-100 (TX-100), dissolved in DESs composed of a lanthanide salt (Ln) and urea (U) is investigated. The role of the identity of the metal salt is assessed by using [La(NO3)3·6H2O] (La) and [Ce(NO3)3·6H2O] (Ce) and that of the composition is deciphered by systematically changing the mole ratio of the metal salt and urea in (La/U) DESs. The response to a fluorescence probe pyrene-1-carboxaldehyde along with electrical conductance and surface tension measurements is used to obtain the critical aggregation concentration (CAC). While the CACs in 1:3.5 (Ln/U) for SDS are significantly lower than that in water, the values are marginally higher for CTAB and TX-100. The CACs for all three surfactants are similar in 1:3.5 (La/U) and (Ce/U) DESs, implying that the identity of the metal in the salt is not so important. Increasing the urea composition in (La/U) DESs results in increased CAC for SDS and CTAB; however, a minimal decrease in CAC is observed for TX-100. From the temperature dependence of CAC, thermodynamic parameters, ΔGagg0, ΔHagg0, and ΔSagg0, of the surfactant self-aggregation process are estimated. These parameters reveal that while at a lower urea content, the SDS/CTAB self-assembly process is enthalpically driven, it becomes entropically favored at higher urea concentrations. The TX-100 self-aggregation in these DESs is found to be strongly enthalpically favored and entropically un-favored. These parameters are explained as a combination of passage of the solvophobic surfactant chain from the bulk DES to the aggregate pseudo-phase and differential orientation/organization of DES constituents around surfactant monomers and/or aggregates
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Anjali
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pandey, Siddharth
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 39(2023), 14 vom: 11. Apr., Seite 5129-5136
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2023
|g number:14
|g day:11
|g month:04
|g pages:5129-5136
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.3c00189
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2023
|e 14
|b 11
|c 04
|h 5129-5136
|