Surface Chemistry of Biologically Active Reducible Oxide Nanozymes

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 10 vom: 31. März, Seite e2211261
1. Verfasser: Neal, Craig J (VerfasserIn)
Weitere Verfasser: Kolanthai, Elayaraja, Wei, Fei, Coathup, Melanie, Seal, Sudipta
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review ROS scavenging cerium oxide nanozyme protein corona reducible oxide Protein Corona Oxides
LEADER 01000caa a22002652 4500
001 NLM355057816
003 DE-627
005 20240308231940.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202211261  |2 doi 
028 5 2 |a pubmed24n1320.xml 
035 |a (DE-627)NLM355057816 
035 |a (NLM)37000888 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Neal, Craig J  |e verfasserin  |4 aut 
245 1 0 |a Surface Chemistry of Biologically Active Reducible Oxide Nanozymes 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.03.2024 
500 |a Date Revised 08.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Reducible metal oxide nanozymes (rNZs) are a subject of intense recent interest due to their catalytic nature, ease of synthesis, and complex surface character. Such materials contain surface sites which facilitate enzyme-mimetic reactions via substrate coordination and redox cycling. Further, these surface reactive sites are shown to be highly sensitive to stresses within the nanomaterial lattice, the physicochemical environment, and to processing conditions occurring as part of their syntheses. When administered in vivo, a complex protein corona binds to the surface, redefining its biological identity and subsequent interactions within the biological system. Catalytic activities of rNZs each deliver a differing impact on protein corona formation, its composition, and in turn, their recognition, and internalization by host cells. Improving the understanding of the precise principles that dominate rNZ surface-biomolecule adsorption raises the question of whether designer rNZs can be engineered to prevent corona formation, or indeed to produce "custom" protein coronas applied either in vitro, and preadministration, or formed immediately upon their exposure to body fluids. Here, fundamental surface chemistry processes and their implications in rNZ material performance are considered. In particular, material structures which inform component adsorption from the application environment, including substrates for enzyme-mimetic reactions are discussed 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a ROS scavenging 
650 4 |a cerium oxide 
650 4 |a nanozyme 
650 4 |a protein corona 
650 4 |a reducible oxide 
650 7 |a Protein Corona  |2 NLM 
650 7 |a Oxides  |2 NLM 
700 1 |a Kolanthai, Elayaraja  |e verfasserin  |4 aut 
700 1 |a Wei, Fei  |e verfasserin  |4 aut 
700 1 |a Coathup, Melanie  |e verfasserin  |4 aut 
700 1 |a Seal, Sudipta  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 10 vom: 31. März, Seite e2211261  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:10  |g day:31  |g month:03  |g pages:e2211261 
856 4 0 |u http://dx.doi.org/10.1002/adma.202211261  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 10  |b 31  |c 03  |h e2211261