All-atom simulations of the trimeric spike protein of SARS-CoV-2 in aqueous medium : Nature of interactions, conformational stability and free energy diagrams for conformational transition of the protein

© 2023 Wiley Periodicals LLC.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 44(2023), 17 vom: 30. Juni, Seite 1560-1577
Auteur principal: Panthi, Bhavana (Auteur)
Autres auteurs: Dutta, Saheb, Chandra, Amalendu
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article Research Support, Non-U.S. Gov't closed and open conformational states direct and water-bridged hydrogen bonds free energy diagram intra- and inter-chain interactions spike protein of SARS-COV-2 spike protein, SARS-CoV-2 Angiotensin-Converting Enzyme 2 EC 3.4.17.23 Spike Glycoprotein, Coronavirus
LEADER 01000caa a22002652c 4500
001 NLM355050862
003 DE-627
005 20250304144717.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27108  |2 doi 
028 5 2 |a pubmed25n1183.xml 
035 |a (DE-627)NLM355050862 
035 |a (NLM)37000187 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Panthi, Bhavana  |e verfasserin  |4 aut 
245 1 0 |a All-atom simulations of the trimeric spike protein of SARS-CoV-2 in aqueous medium  |b Nature of interactions, conformational stability and free energy diagrams for conformational transition of the protein 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.05.2023 
500 |a Date Revised 13.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 Wiley Periodicals LLC. 
520 |a The spike protein of SARS-CoV-2 exists in two major conformational states, namely the 'open' and 'closed' states which are also known as the 'up' and 'down' states, respectively. In its open state, the receptor binding domain (RBD) of the protein is exposed for binding with ACE2, whereas the spike RBD is inaccessible to ACE2 in the closed state of the protein. In the current work, we have performed all-atom microsecond simulations of the full-length trimeric spike protein solvated in explicit aqueous medium with an average system size of ~0.7 million atoms to understand the molecular nature of intra- and inter-chain interactions, water-bridged interactions between different residues that contribute to the stability of the open and closed states of the protein, and also the free energy landscape for transition between the open and closed states of the protein. We have also examined the changes of such interactions that are associated with switching from one state to the other through both unbiased and biased simulations at all-atom level with total run length of 4 μs. Interestingly, after about 0.8 μs of unbiased molecular dynamics run of the spike system in the open state, we observed a gradual transition of the monomeric chain (B) from open to its partially closed or down state. Initially the residues at the interface of chain B RBD in the open state spike protein were at non-hydrogen-bonding distances from the residues of chain C RBD. However, the two RBDs gradually came closer and finally the residue S459 of the RBD of chain B made a hydrogen bond with F374 of chain C in the last 200 ns of the simulation along with formation of a few more hydrogen bonds involving other residues. Since no transition from closed to the open state of the protein is observed in the present 1 μs unbiased simulation of the closed state protein, the current study seems to suggest that the closed conformational state is preferred for the spike protein of SARS-CoV-2 in aqueous medium. Furthermore, calculations of the free energy surface of the conformational transition from open (up) to the closed (down) state using a biased simulation method reveal a free energy barrier of ~3.20 kcal/mol for the transition of RBD from open to the closed state, whereas the barrier for the reverse process is found to be significantly higher 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a closed and open conformational states 
650 4 |a direct and water-bridged hydrogen bonds 
650 4 |a free energy diagram 
650 4 |a intra- and inter-chain interactions 
650 4 |a spike protein of SARS-COV-2 
650 7 |a spike protein, SARS-CoV-2  |2 NLM 
650 7 |a Angiotensin-Converting Enzyme 2  |2 NLM 
650 7 |a EC 3.4.17.23  |2 NLM 
650 7 |a Spike Glycoprotein, Coronavirus  |2 NLM 
700 1 |a Dutta, Saheb  |e verfasserin  |4 aut 
700 1 |a Chandra, Amalendu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 44(2023), 17 vom: 30. Juni, Seite 1560-1577  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:44  |g year:2023  |g number:17  |g day:30  |g month:06  |g pages:1560-1577 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27108  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2023  |e 17  |b 30  |c 06  |h 1560-1577