Geometric constraints within tripeptides and the existence of tripeptide reconstructions

© 2023 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 44(2023), 13 vom: 15. Mai, Seite 1236-1249
1. Verfasser: O'Donnell, Timothée (VerfasserIn)
Weitere Verfasser: Agashe, Viraj, Cazals, Frédéric
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't flexible loops kinematics loop closure protein conformations
LEADER 01000naa a22002652 4500
001 NLM355046520
003 DE-627
005 20231226063524.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27074  |2 doi 
028 5 2 |a pubmed24n1183.xml 
035 |a (DE-627)NLM355046520 
035 |a (NLM)36999748 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a O'Donnell, Timothée  |e verfasserin  |4 aut 
245 1 0 |a Geometric constraints within tripeptides and the existence of tripeptide reconstructions 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.04.2023 
500 |a Date Revised 13.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 Wiley Periodicals LLC. 
520 |a Designing movesets providing high quality protein conformations remains a hard problem, especially when it comes to deform a long protein backbone segment, and a key building block to do so is the so-called tripeptide loop closure (TLC). Consider a tripeptide whose first and last bonds ( N 1 C α ; 1 and C α ; 3 C 3 ) are fixed, and so are all internal coordinates except the six ϕ ψ i = 1,2,3 dihedral angles associated to the three C α carbons. Under these conditions, the TLC algorithm provides all possible values for these six dihedral angles-there exists at most 16 solutions. TLC moves atoms up to ∼ 5 Å in one step and retains low energy conformations, whence its pivotal role to design move sets sampling protein loop conformations. In this work, we relax the previous constraints, allowing the last bond ( C α ; 3 C 3 ) to freely move in 3D space-or equivalently in a 5D configuration space. We exhibit necessary geometric constraints in this 5D space for TLC to admit solutions. Our analysis provides key insights on the geometry of solutions for TLC. Most importantly, when using TLC to sample loop conformations based on m consecutive tripeptides along a protein backbone, we obtain an exponential gain in the volume of the 5 m -dimensional configuration space to be explored 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a flexible loops 
650 4 |a kinematics 
650 4 |a loop closure 
650 4 |a protein conformations 
700 1 |a Agashe, Viraj  |e verfasserin  |4 aut 
700 1 |a Cazals, Frédéric  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 44(2023), 13 vom: 15. Mai, Seite 1236-1249  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:44  |g year:2023  |g number:13  |g day:15  |g month:05  |g pages:1236-1249 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27074  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2023  |e 13  |b 15  |c 05  |h 1236-1249