Bio-Inspired Active Self-Cleaning Surfaces via Filament-Like Sweepers Array

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 25 vom: 30. Juni, Seite e2212246
1. Verfasser: Wu, Qingshan (VerfasserIn)
Weitere Verfasser: Yan, Hao, Chen, Lie, Qi, Shuanhu, Zhao, Tianyi, Jiang, Lei, Liu, Mingjie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article filament sweeper fluid-structure coupling hydrodynamic energy self-cleaning
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Hydrodynamic forces from moving fluids can be utilized to remove contaminants which is an ideal fouling-release strategy for underwater surfaces. However, the hydrodynamic forces in the viscous sublayer are greatly reduced owing to the no-slip condition, which restricts their practical applications. Here, inspired by sweeper tentacles of corals, an active self-cleaning surface with flexible filament-like sweepers are reported. The sweepers can penetrate the viscous sublayer by utilizing energy from outer turbulent flows and remove contaminants with adhesion strength of >30 kPa. Under an oscillating flow, the removal rate of the single sweeper can reach up to 99.5% due to dynamic buckling movements. In addition, the sweepers array can completely clean its coverage area within 10 s through coordinated movements as symplectic waves. The active self-cleaning surface depends on the fluid-structure coupling between sweepers and flows, which breaks the concept of conventional self-cleaning
Beschreibung:Date Completed 22.06.2023
Date Revised 22.06.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202212246