Quantitative Optical and Structural Comparison of 3D and (2+1)D Colloidal Photonic Crystals
Colloidal crystals are excellent model systems to study self-assembly and structural coloration because their periodicities coincide with the wavelength range of visible light. Different assembly methods inherently introduce characteristic defects and irregularities, even with nearly monodisperse co...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 14 vom: 11. Apr., Seite 5211-5221 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Colloidal crystals are excellent model systems to study self-assembly and structural coloration because their periodicities coincide with the wavelength range of visible light. Different assembly methods inherently introduce characteristic defects and irregularities, even with nearly monodisperse colloidal particles. Here, we investigate how these imperfections influence the structural coloration by comparing two techniques to obtain colloidal crystals. 3D colloidal crystals produced by convective assembly are well-ordered and periodically arranged but show microscopic cracks. (2+1)D colloidal crystals fabricated by stacking individual monolayers show a decreased hexagonal order and limited crystal registration between single monolayers in the z-direction. We investigate the optical properties of both systems by comparing identical numbers of layers using correlative microspectroscopy. These measurements show that the less ordered (2+1)D colloidal crystals exhibit higher reflected light intensities. Macroscopic reflection integrating all angles shows that the reflected light intensity levels out with an increasing number of layers, whereas incoherent scattering increases. Although both types of colloidal crystal show similar angle-dependent color shifts in specular reflection, the less-ordered structure of the (2+1)D colloidal crystal scatters light within a larger angular range under diffusive illumination. Our results suggest that structural coloration is surprisingly robust toward local defects and irregularities |
---|---|
Beschreibung: | Date Completed 11.04.2023 Date Revised 11.04.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.3c00293 |