Spherical DNA for Probing Wettability of Microplastics
Wettability of microplastics may change due to chemical or physical transformations at their surface. In this work, we studied the adsorption of spherical nucleic acids (SNAs) with a gold nanoparticle core and linear DNA of the same sequence to probe the wettability of microplastics. Soaking micropl...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 14 vom: 11. Apr., Seite 4959-4966 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Microplastics Plastics Gold 7440-57-5 DNA 9007-49-2 Water 059QF0KO0R |
Zusammenfassung: | Wettability of microplastics may change due to chemical or physical transformations at their surface. In this work, we studied the adsorption of spherical nucleic acids (SNAs) with a gold nanoparticle core and linear DNA of the same sequence to probe the wettability of microplastics. Soaking microplastics in water at room temperature for 3 months resulted in the enhancement of SNA adsorption capacity and affinity, whereas linear DNA adsorption was the same on the fresh and soaked microplastics. Drying of the soaked microplastics followed by rehydration decreased the adsorption of the SNA, suggesting that the effect of soaking was reversible and related to physical changes instead of chemical changes of the microplastics. Raman spectroscopy data also revealed no chemical transformations of the soaked microplastics. Heating of microplastics over a short period induced a similar effect to long-term soaking. We propose that soaking or heating removes air entrapped in the nanosized pores at the water-plastic interface, increasing the contact surface area of the SNA to afford stronger adsorption. However, such wetted porosity would not change the adsorption of linear DNA because of its much smaller size |
---|---|
Beschreibung: | Date Completed 12.04.2023 Date Revised 12.04.2023 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c03417 |