|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM354832425 |
003 |
DE-627 |
005 |
20231226063050.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/nph.18914
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1182.xml
|
035 |
|
|
|a (DE-627)NLM354832425
|
035 |
|
|
|a (NLM)36978279
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Horsch, Caitlyn C A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Trait-based assembly of arbuscular mycorrhizal fungal communities determines soil carbon formation and retention
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.06.2023
|
500 |
|
|
|a Date Revised 04.06.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
|
520 |
|
|
|a Fungi are crucial for soil organic carbon (SOC) formation, especially for the more persistent mineral-associated organic C (MAOC) pool. Yet, evidence for this often overlooks arbuscular mycorrhizal fungi (AMF) communities and how their composition and traits impact SOC accumulation. We grew sudangrass with AMF communities representing different traits conserved at the family level: competitors, from the Gigasporaceae family; ruderals, from the Glomeraceae family; or both families combined. We labeled sudangrass with 13 C-CO2 to assess AMF contributions to SOC, impacts on SOC priming, and fungal biomass persistence in MAOC. Single-family AMF communities decreased total SOC by 13.8%, likely due to fungal priming. Despite net SOC losses, all AMF communities contributed fungal C to soil but only the Glomeraceae community initially contributed to MAOC. After a month of decomposition, both the Glomeraceae and mixed-family communities contributed to MAOC formation. Plant phosphorus uptake, but not hyphal chemistry, was positively related to AMF soil C and MAOC accumulation. Arbuscular mycorrhizal fungi contribution to MAOC is dependent on the specific traits of the AMF community and related to phosphorus uptake. These findings provide insight into how variations in AMF community composition and traits, and thus processes like environmental filtering of AMF, may impact SOC accumulation
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Gigasporaceae
|
650 |
|
4 |
|a Glomeraceae
|
650 |
|
4 |
|a arbuscular mycorrhizal fungi (AMF)
|
650 |
|
4 |
|a fungal traits and phylogenetic diversity
|
650 |
|
4 |
|a mineral-associated organic carbon
|
650 |
|
4 |
|a phosphorus
|
650 |
|
4 |
|a soil carbon
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
650 |
|
7 |
|a Phosphorus
|2 NLM
|
650 |
|
7 |
|a 27YLU75U4W
|2 NLM
|
700 |
1 |
|
|a Antunes, Pedro M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fahey, Catherine
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Grandy, A Stuart
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kallenbach, Cynthia M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 239(2023), 1 vom: 30. Juli, Seite 311-324
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:239
|g year:2023
|g number:1
|g day:30
|g month:07
|g pages:311-324
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/nph.18914
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 239
|j 2023
|e 1
|b 30
|c 07
|h 311-324
|