Tailored Electronic Structure of Ir in High Entropy Alloy for Highly Active and Durable Bifunctional Electrocatalyst for Water Splitting under an Acidic Environment

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 26 vom: 05. Juni, Seite e2300091
1. Verfasser: Kwon, Jiseok (VerfasserIn)
Weitere Verfasser: Sun, Seho, Choi, Seunggun, Lee, Kangchun, Jo, Seonghan, Park, Keemin, Kim, Young Kwang, Park, Ho Bum, Park, Hee Young, Jang, Jong Hyun, Han, Hyuksu, Paik, Ungyu, Song, Taeseup
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article PEM electrolysis bifunctional electrocatalysts compositional engineering high entropy alloys
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Proton-exchange-membrane water electrolysis (PEMWE) requires an efficient and durable bifunctional electrocatalyst for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, Ir-based electrocatalyst is designed using the high entropy alloy (HEA) platform of ZnNiCoIrX with two elements (X: Fe and Mn). A facile dealloying in the vacuum system enables the construction of a nanoporous structure with high crystallinity using Zn as a sacrificial element. Especially, Mn incorporation into HEAs tailors the electronic structure of the Ir site, resulting in the d-band center being far away from the Fermi level. Downshifting of the d-band center weakens the adsorption energy with reaction intermediates, which is beneficial for catalytic reactions. Despite low Ir content, ZnNiCoIrMn delivers only 50 mV overpotential for HER at -50 mA cm-2 and 237 mV overpotential for the OER at 10 mA cm-2 . Furthermore, ZnNiCoIrMn shows almost constant voltage for the HER and OER for 100 h and a high stability number of 3.4 × 105 nhydrogen nIr -1 and 2.4 × 105 noxygen nIr -1 , demonstrating the exceptional durability of the HEA platform. The compositional engineering of ZnNiCoIrMn limits the diffusion of elements by high entropy effects and simultaneously tailors the electronic structure of active Ir sites, resulting in the modified cohesive and adsorption energies, all of which can suppress the dissolution of elements
Beschreibung:Date Completed 28.06.2023
Date Revised 28.06.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202300091