Understanding Causalities in Organic Photovoltaics Device Degradation in a Machine-Learning-Driven High-Throughput Platform

© 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 20 vom: 26. Mai, Seite e2300259
1. Verfasser: Liu, Chao (VerfasserIn)
Weitere Verfasser: Lüer, Larry, Corre, Vincent M Le, Forberich, Karen, Weitz, Paul, Heumüller, Thomas, Du, Xiaoyan, Wortmann, Jonas, Zhang, Jiyun, Wagner, Jerrit, Ying, Lei, Hauch, Jens, Li, Ning, Brabec, Christoph J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Gaussian process regression (GPR) prediction device stability linear Pearson correlations machine learning organic solar cells
LEADER 01000caa a22002652 4500
001 NLM354664026
003 DE-627
005 20240516232240.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202300259  |2 doi 
028 5 2 |a pubmed24n1409.xml 
035 |a (DE-627)NLM354664026 
035 |a (NLM)36961263 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Chao  |e verfasserin  |4 aut 
245 1 0 |a Understanding Causalities in Organic Photovoltaics Device Degradation in a Machine-Learning-Driven High-Throughput Platform 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH. 
520 |a Organic solar cells (OSCs) now approach power conversion efficiencies of 20%. However, in order to enter mass markets, problems in upscaling and operational lifetime have to be solved, both concerning the connection between processing conditions and active layer morphology. Morphological studies supporting the development of structure-process-property relations are time-consuming, complex, and expensive to undergo and for which statistics, needed to assess significance, are difficult to be collected. This work demonstrates that causal relationships between processing conditions, morphology, and stability can be obtained in a high-throughput method by combining low-cost automated experiments with data-driven analysis methods. An automatic spectral modeling feeds parametrized absorption data into a feature selection technique that is combined with Gaussian process regression to quantify deterministic relationships linking morphological features and processing conditions with device functionality. The effect of the active layer thickness and the morphological order is further modeled by drift-diffusion simulations and returns valuable insight into the underlying mechanisms for improving device stability by tuning the microstructure morphology with versatile approaches. Predicting microstructural features as a function of processing parameters is decisive know-how for the large-scale production of OSCs 
650 4 |a Journal Article 
650 4 |a Gaussian process regression (GPR) prediction 
650 4 |a device stability 
650 4 |a linear Pearson correlations 
650 4 |a machine learning 
650 4 |a organic solar cells 
700 1 |a Lüer, Larry  |e verfasserin  |4 aut 
700 1 |a Corre, Vincent M Le  |e verfasserin  |4 aut 
700 1 |a Forberich, Karen  |e verfasserin  |4 aut 
700 1 |a Weitz, Paul  |e verfasserin  |4 aut 
700 1 |a Heumüller, Thomas  |e verfasserin  |4 aut 
700 1 |a Du, Xiaoyan  |e verfasserin  |4 aut 
700 1 |a Wortmann, Jonas  |e verfasserin  |4 aut 
700 1 |a Zhang, Jiyun  |e verfasserin  |4 aut 
700 1 |a Wagner, Jerrit  |e verfasserin  |4 aut 
700 1 |a Ying, Lei  |e verfasserin  |4 aut 
700 1 |a Hauch, Jens  |e verfasserin  |4 aut 
700 1 |a Li, Ning  |e verfasserin  |4 aut 
700 1 |a Brabec, Christoph J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 20 vom: 26. Mai, Seite e2300259  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:20  |g day:26  |g month:05  |g pages:e2300259 
856 4 0 |u http://dx.doi.org/10.1002/adma.202300259  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 20  |b 26  |c 05  |h e2300259