Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 22 vom: 15. Juni, Seite e2210788
Auteur principal: Schmidt, Jonathan (Auteur)
Autres auteurs: Hoffmann, Noah, Wang, Hai-Chen, Borlido, Pedro, Carriço, Pedro J M A, Cerqueira, Tiago F T, Botti, Silvana, Marques, Miguel A L
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article high-throughput density functional theory calculations machine learning material science material discovery superconductivity superhard materials
LEADER 01000caa a22002652c 4500
001 NLM354542001
003 DE-627
005 20250304134517.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202210788  |2 doi 
028 5 2 |a pubmed25n1181.xml 
035 |a (DE-627)NLM354542001 
035 |a (NLM)36949007 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Schmidt, Jonathan  |e verfasserin  |4 aut 
245 1 0 |a Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.06.2023 
500 |a Date Revised 01.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Crystal-graph attention neural networks have emerged recently as remarkable tools for the prediction of thermodynamic stability. The efficacy of their learning capabilities and their reliability is however subject to the quantity and quality of the data they are fed. Previous networks exhibit strong biases due to the inhomogeneity of the training data. Here a high-quality dataset is engineered to provide a better balance across chemical and crystal-symmetry space. Crystal-graph neural networks trained with this dataset show unprecedented generalization accuracy. Such networks are applied to perform machine-learning-assisted high-throughput searches of stable materials, spanning 1 billion candidates. In this way, the number of vertices of the global T = 0 K phase diagram is increased by 30% and find more than ≈150 000 compounds with a distance to the convex hull of stability of less than 50 meV atom-1 . The discovered materials are then accessed for applications, identifying compounds with extreme values of a few properties, such as superconductivity, superhardness, and giant gap-deformation potentials 
650 4 |a Journal Article 
650 4 |a high-throughput density functional theory calculations 
650 4 |a machine learning material science 
650 4 |a material discovery 
650 4 |a superconductivity 
650 4 |a superhard materials 
700 1 |a Hoffmann, Noah  |e verfasserin  |4 aut 
700 1 |a Wang, Hai-Chen  |e verfasserin  |4 aut 
700 1 |a Borlido, Pedro  |e verfasserin  |4 aut 
700 1 |a Carriço, Pedro J M A  |e verfasserin  |4 aut 
700 1 |a Cerqueira, Tiago F T  |e verfasserin  |4 aut 
700 1 |a Botti, Silvana  |e verfasserin  |4 aut 
700 1 |a Marques, Miguel A L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 22 vom: 15. Juni, Seite e2210788  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:35  |g year:2023  |g number:22  |g day:15  |g month:06  |g pages:e2210788 
856 4 0 |u http://dx.doi.org/10.1002/adma.202210788  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 22  |b 15  |c 06  |h e2210788