RAINBOW Organic Solar Cells : Implementing Spectral Splitting in Lateral Multi-Junction Architectures

© 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 20 vom: 17. Mai, Seite e2212226
1. Verfasser: Gibert-Roca, Martí (VerfasserIn)
Weitere Verfasser: Casademont-Viñas, Miquel, Liu, Quan, Vandewal, Koen, Goñi, Alejandro R, Campoy-Quiles, Mariano
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article RAINBOW solar cells multi‐junction geometries nonfullerene blends organic photovoltaics spectral splitting tandem devices
LEADER 01000caa a22002652 4500
001 NLM354494791
003 DE-627
005 20240516232239.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202212226  |2 doi 
028 5 2 |a pubmed24n1409.xml 
035 |a (DE-627)NLM354494791 
035 |a (NLM)36944218 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gibert-Roca, Martí  |e verfasserin  |4 aut 
245 1 0 |a RAINBOW Organic Solar Cells  |b Implementing Spectral Splitting in Lateral Multi-Junction Architectures 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH. 
520 |a While multi-junction geometries have the potential to boost the efficiency of organic solar cells, the experimental gains yet obtained are still very modest. This work proposes an alternative spectral splitting device concept in which various individual semiconducting junctions with cascading bandgaps are laid side by side, thus the name RAINBOW. Each lateral sub-cell receives a fraction of the spectrum that closely matches the main absorption band of the given semiconductor. Here, simulations are used to identify the important material and device properties of each RAINBOW sub-cell. Using the resulting design rules, three systems are selected, with narrow, medium, and wide effective bandgaps, and their potential as sub-cells in this geometry is experimentally investigated. With the aid of a custom-built setup that generates spectrally spread sunlight on demand, the simulations are experimentally validated, showing that this geometry can lead to a reduction in thermalization losses and an improvement in light harvesting, which results in a relative improvement in efficiency of 46.6% with respect to the best sub-cell. Finally, a working proof-of-concept monolithic device consisting of two sub-cells deposited from solution on the same substrate is fabricated, thus demonstrating the feasibility and the potential of the RAINBOW solar cell concept 
650 4 |a Journal Article 
650 4 |a RAINBOW solar cells 
650 4 |a multi‐junction geometries 
650 4 |a nonfullerene blends 
650 4 |a organic photovoltaics 
650 4 |a spectral splitting 
650 4 |a tandem devices 
700 1 |a Casademont-Viñas, Miquel  |e verfasserin  |4 aut 
700 1 |a Liu, Quan  |e verfasserin  |4 aut 
700 1 |a Vandewal, Koen  |e verfasserin  |4 aut 
700 1 |a Goñi, Alejandro R  |e verfasserin  |4 aut 
700 1 |a Campoy-Quiles, Mariano  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 20 vom: 17. Mai, Seite e2212226  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:20  |g day:17  |g month:05  |g pages:e2212226 
856 4 0 |u http://dx.doi.org/10.1002/adma.202212226  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 20  |b 17  |c 05  |h e2212226