|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM354493108 |
003 |
DE-627 |
005 |
20231226062336.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202207904
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1181.xml
|
035 |
|
|
|a (DE-627)NLM354493108
|
035 |
|
|
|a (NLM)36944045
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Boya
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Stacking Faults Inducing Oxygen Anion Activities in Li2 MnO3
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.06.2023
|
500 |
|
|
|a Date Revised 01.06.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Controllable anionic redox for a transformational increase in the energy density is the pursuit of next generation Li-ion battery cathode materials. Its activation mechanism is coupled with the local coordination environment around O, which posts experimental challenges for control. Here, the tuning capability of anionic redox is shown by varying O local environment via experimentally controlling the density of stacking faults in Li2 MnO3 , the parent compound of Li-rich oxides. By combining computational analysis and spectroscopic study, it is quantitatively revealed that more stacking faults can trigger smaller LiOLi bond angles and larger LiO bond distance in local Li-rich environments and subsequently activate oxygen redox reactivity, which in turn enhances the reactivity of Mn upon the following reduction process. This study highlights the critical role of local structure environment in tuning the anionic reactivity, which provides guidance in designing high-capacity layered cathodes by appropriately adjusting stacking faults
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Li-ion batteries
|
650 |
|
4 |
|a Li2MnO3
|
650 |
|
4 |
|a LiOLi bond angles
|
650 |
|
4 |
|a oxygen anion activities
|
650 |
|
4 |
|a stacking faults
|
700 |
1 |
|
|a Zhuo, Zengqing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Haifeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Shiqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Shu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Jue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiao, Dongdong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Wanli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Haijun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 22 vom: 01. Juni, Seite e2207904
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:22
|g day:01
|g month:06
|g pages:e2207904
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202207904
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 22
|b 01
|c 06
|h e2207904
|