|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM35447801X |
003 |
DE-627 |
005 |
20231226062316.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.2c03405
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1181.xml
|
035 |
|
|
|a (DE-627)NLM35447801X
|
035 |
|
|
|a (NLM)36942451
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wei, Ye
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Flexible, Wash-Resistant Human Mechanical Energy Harvesting and Storage System for Monitoring Human Movement
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 22.03.2023
|
500 |
|
|
|a Date Revised 12.04.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The rapid development of personal portable electronic devices has brought an increasingly urgent need for flexible and portable power sources. Herein, a low-cost, wearable, efficient, sustainable energy harvesting and storage system for human motion detection has been developed, based on a supercapacitor (SC) and triboelectric nanogenerator (TENG). Carbon cloth (CC)-loaded ZnO/ZnS nanoarrays and a PVD-treated polyurethane conductive sponge are employed as positive and negative triboelectric friction layers, respectively. Besides, flexible and robust silicone rubber provides stable output performance and enables the TENG to harvest mechanical energy from human motion even under complex conditions. As a result, it shows excellent electrical output performance in terms of the open-circuit voltage, short-circuit current, and average power density, reaching 175 V, 12 μA, and 816.7 mW m-2, respectively. These outstanding performances enable the TENG to effectively charge an all-solid-state symmetrical SC (MnO2/LiMn2O4CC//MnO2/LiMn2O4@CC) and subsequently store it as electrochemical energy for sustainable power supply. Because of the flexible all-texture-type structure of the entire system, it is capable of monitoring the human body's movement. This work has a promising future in random mechanical energy harvesting and storage, as well as human motion tracking
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Manganese Compounds
|2 NLM
|
650 |
|
7 |
|a Oxides
|2 NLM
|
700 |
1 |
|
|a Zu, Guoqing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Chuanyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Xijia
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 39(2023), 11 vom: 21. März, Seite 4060-4070
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2023
|g number:11
|g day:21
|g month:03
|g pages:4060-4070
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.2c03405
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2023
|e 11
|b 21
|c 03
|h 4060-4070
|