Preventing Vanishing Gradient Problem of Hardware Neuromorphic System by Implementing Imidazole-Based Memristive ReLU Activation Neuron

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 24 vom: 24. Juni, Seite e2300023
1. Verfasser: Oh, Jungyeop (VerfasserIn)
Weitere Verfasser: Kim, Sungkyu, Lee, Changhyeon, Cha, Jun-Hwe, Yang, Sang Yoon, Im, Sung Gap, Park, Cheolmin, Jang, Byung Chul, Choi, Sung-Yool
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article ReLU activation neuron deep neural network initiated chemical vapor deposition neuromorphic computing vanishing gradient problem
LEADER 01000naa a22002652 4500
001 NLM354442759
003 DE-627
005 20231226062231.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202300023  |2 doi 
028 5 2 |a pubmed24n1181.xml 
035 |a (DE-627)NLM354442759 
035 |a (NLM)36938884 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Oh, Jungyeop  |e verfasserin  |4 aut 
245 1 0 |a Preventing Vanishing Gradient Problem of Hardware Neuromorphic System by Implementing Imidazole-Based Memristive ReLU Activation Neuron 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.06.2023 
500 |a Date Revised 15.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a With advances in artificial intelligent services, brain-inspired neuromorphic systems with synaptic devices are recently attracting significant interest to circumvent the von Neumann bottleneck. However, the increasing trend of deep neural network parameters causes huge power consumption and large area overhead of a nonlinear neuron electronic circuit, and it incurs a vanishing gradient problem. Here, a memristor-based compact and energy-efficient neuron device is presented to implement a rectifying linear unit (ReLU) activation function. To emulate the volatile and gradual switching of the ReLU function, a copolymer memristor with a hybrid structure is proposed using a copolymer/inorganic bilayer. The functional copolymer film developed by introducing imidazole functional groups enables the formation of nanocluster-type pseudo-conductive filaments by boosting the nucleation of Cu nanoclusters, causing gradual switching. The ReLU neuron device is successfully demonstrated by integrating the memristor with amorphous InGaZnO thin-film transistors, and achieves 0.5 pJ of energy consumption based on sub-10 µA operation current and high-speed switching of 650 ns. Furthermore, device-to-system-level simulation using neuron devices on the MNIST dataset demonstrates that the vanishing gradient problem is effectively resolved by five-layer deep neural networks. The proposed neuron device will enable the implementation of high-density and energy-efficient hardware neuromorphic systems 
650 4 |a Journal Article 
650 4 |a ReLU activation neuron 
650 4 |a deep neural network 
650 4 |a initiated chemical vapor deposition 
650 4 |a neuromorphic computing 
650 4 |a vanishing gradient problem 
700 1 |a Kim, Sungkyu  |e verfasserin  |4 aut 
700 1 |a Lee, Changhyeon  |e verfasserin  |4 aut 
700 1 |a Cha, Jun-Hwe  |e verfasserin  |4 aut 
700 1 |a Yang, Sang Yoon  |e verfasserin  |4 aut 
700 1 |a Im, Sung Gap  |e verfasserin  |4 aut 
700 1 |a Park, Cheolmin  |e verfasserin  |4 aut 
700 1 |a Jang, Byung Chul  |e verfasserin  |4 aut 
700 1 |a Choi, Sung-Yool  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 24 vom: 24. Juni, Seite e2300023  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:24  |g day:24  |g month:06  |g pages:e2300023 
856 4 0 |u http://dx.doi.org/10.1002/adma.202300023  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 24  |b 24  |c 06  |h e2300023