Electrochemical Healing of Fractured Metals

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 24 vom: 01. Juni, Seite e2211242
1. Verfasser: Hsain, Zakaria (VerfasserIn)
Weitere Verfasser: Akbari, Mostafa, Prasanna, Adhokshid, Jiang, Zhimin, Akbarzadeh, Masoud, Pikul, James H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 3D printing circular economy electrodeposition healing repair structural metals
LEADER 01000naa a22002652 4500
001 NLM354386654
003 DE-627
005 20231226062117.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202211242  |2 doi 
028 5 2 |a pubmed24n1181.xml 
035 |a (DE-627)NLM354386654 
035 |a (NLM)36933269 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hsain, Zakaria  |e verfasserin  |4 aut 
245 1 0 |a Electrochemical Healing of Fractured Metals 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.06.2023 
500 |a Date Revised 15.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Repairing fractured metals to extend their useful lifetimes advances sustainability and mitigates carbon emissions from metal mining and processing. While high-temperature techniques are being used to repair metals, the increasing ubiquity of digital manufacturing and "unweldable" alloys, as well as the integration of metals with polymers and electronics, call for radically different repair approaches. Herein, a framework for effective room-temperature repair of fractured metals using an area-selective nickel electrodeposition process refered to as electrochemical healing is presented. Based on a model that links geometric, mechanical, and electrochemical parameters to the recovery of tensile strength, this framework enables 100% recovery of tensile strength in nickel, low-carbon steel, two "unweldable" aluminum alloys, and a 3D-printed difficult-to-weld shellular structure using a single common electrolyte. Through a distinct energy-dissipation mechanism, this framework also enables up to 136% recovery of toughness in an aluminum alloy. To facilitate practical adoption, this work reveals scaling laws for the energetic, financial, and time costs of healing, and demonstrates the restoration of a functional level of strength in a fractured standard steel wrench. Empowered with this framework, room-temperature electrochemical healing can open exciting possibilities for the effective, scalable repair of metals in diverse applications 
650 4 |a Journal Article 
650 4 |a 3D printing 
650 4 |a circular economy 
650 4 |a electrodeposition 
650 4 |a healing 
650 4 |a repair 
650 4 |a structural metals 
700 1 |a Akbari, Mostafa  |e verfasserin  |4 aut 
700 1 |a Prasanna, Adhokshid  |e verfasserin  |4 aut 
700 1 |a Jiang, Zhimin  |e verfasserin  |4 aut 
700 1 |a Akbarzadeh, Masoud  |e verfasserin  |4 aut 
700 1 |a Pikul, James H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 24 vom: 01. Juni, Seite e2211242  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:24  |g day:01  |g month:06  |g pages:e2211242 
856 4 0 |u http://dx.doi.org/10.1002/adma.202211242  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 24  |b 01  |c 06  |h e2211242