Near-Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap-Filling Adhesives

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 31 vom: 16. Aug., Seite e2211100
1. Verfasser: Chen, Lu (VerfasserIn)
Weitere Verfasser: Liu, Te-Huan, Wang, Xiangze, Wang, Yandong, Cui, Xiwei, Yan, Qingwei, Lv, Le, Ying, Junfeng, Gao, Jingyao, Han, Meng, Yu, Jinhong, Song, Chengyi, Gao, Jinwei, Sun, Rong, Xue, Chen, Jiang, Nan, Deng, Tao, Nishimura, Kazuhito, Yang, Ronggui, Lin, Cheng-Te, Dai, Wen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D materials Ag nanoflakes interfacial heat transfer thermal interface materials thermal percolation
LEADER 01000naa a22002652 4500
001 NLM354345834
003 DE-627
005 20231226062023.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202211100  |2 doi 
028 5 2 |a pubmed24n1181.xml 
035 |a (DE-627)NLM354345834 
035 |a (NLM)36929098 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Lu  |e verfasserin  |4 aut 
245 1 0 |a Near-Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap-Filling Adhesives 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.08.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat-transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high-performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m-1 K-1 at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by "bottom-up" processes (e.g., solution-based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20-65% of the theoretical value. Here, a "top-down" strategy by splitting highly purified Ag foil with nanoscale thickness is adopted to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m-1 K-1 , reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibits a thermal conductivity of 15.1 W m-1 K-1 at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat-transfer efficiency of the Ag/epoxy achieves ≈1.4 times that of the state-of-the-art commercial TCA 
650 4 |a Journal Article 
650 4 |a 2D materials 
650 4 |a Ag nanoflakes 
650 4 |a interfacial heat transfer 
650 4 |a thermal interface materials 
650 4 |a thermal percolation 
700 1 |a Liu, Te-Huan  |e verfasserin  |4 aut 
700 1 |a Wang, Xiangze  |e verfasserin  |4 aut 
700 1 |a Wang, Yandong  |e verfasserin  |4 aut 
700 1 |a Cui, Xiwei  |e verfasserin  |4 aut 
700 1 |a Yan, Qingwei  |e verfasserin  |4 aut 
700 1 |a Lv, Le  |e verfasserin  |4 aut 
700 1 |a Ying, Junfeng  |e verfasserin  |4 aut 
700 1 |a Gao, Jingyao  |e verfasserin  |4 aut 
700 1 |a Han, Meng  |e verfasserin  |4 aut 
700 1 |a Yu, Jinhong  |e verfasserin  |4 aut 
700 1 |a Song, Chengyi  |e verfasserin  |4 aut 
700 1 |a Gao, Jinwei  |e verfasserin  |4 aut 
700 1 |a Sun, Rong  |e verfasserin  |4 aut 
700 1 |a Xue, Chen  |e verfasserin  |4 aut 
700 1 |a Jiang, Nan  |e verfasserin  |4 aut 
700 1 |a Deng, Tao  |e verfasserin  |4 aut 
700 1 |a Nishimura, Kazuhito  |e verfasserin  |4 aut 
700 1 |a Yang, Ronggui  |e verfasserin  |4 aut 
700 1 |a Lin, Cheng-Te  |e verfasserin  |4 aut 
700 1 |a Dai, Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 31 vom: 16. Aug., Seite e2211100  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:31  |g day:16  |g month:08  |g pages:e2211100 
856 4 0 |u http://dx.doi.org/10.1002/adma.202211100  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 31  |b 16  |c 08  |h e2211100