|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM354345834 |
003 |
DE-627 |
005 |
20231226062023.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202211100
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1181.xml
|
035 |
|
|
|a (DE-627)NLM354345834
|
035 |
|
|
|a (NLM)36929098
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Lu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Near-Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap-Filling Adhesives
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 03.08.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat-transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high-performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m-1 K-1 at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by "bottom-up" processes (e.g., solution-based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20-65% of the theoretical value. Here, a "top-down" strategy by splitting highly purified Ag foil with nanoscale thickness is adopted to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m-1 K-1 , reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibits a thermal conductivity of 15.1 W m-1 K-1 at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat-transfer efficiency of the Ag/epoxy achieves ≈1.4 times that of the state-of-the-art commercial TCA
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D materials
|
650 |
|
4 |
|a Ag nanoflakes
|
650 |
|
4 |
|a interfacial heat transfer
|
650 |
|
4 |
|a thermal interface materials
|
650 |
|
4 |
|a thermal percolation
|
700 |
1 |
|
|a Liu, Te-Huan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Xiangze
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yandong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cui, Xiwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Qingwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lv, Le
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ying, Junfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Jingyao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Meng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Jinhong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Chengyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Jinwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Rong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xue, Chen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Nan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Tao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nishimura, Kazuhito
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Ronggui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Cheng-Te
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dai, Wen
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 31 vom: 16. Aug., Seite e2211100
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:31
|g day:16
|g month:08
|g pages:e2211100
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202211100
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 31
|b 16
|c 08
|h e2211100
|