Prediction model for biochar energy potential based on biomass properties and pyrolysis conditions derived from rough set machine learning

Biochar is a high-carbon-content organic compound that has potential applications in the field of energy storage and conversion. It can be produced from a variety of biomass feedstocks such as plant-based, animal-based, and municipal waste at different pyrolysis conditions. However, it is difficult...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1993. - 45(2024), 15 vom: 17. Juni, Seite 2908-2922
1. Verfasser: Tang, Jia Yong (VerfasserIn)
Weitere Verfasser: Chung, Boaz Yi Heng, Ang, Jia Chun, Chong, Jia Wen, Tan, Raymond R, Aviso, Kathleen B, Chemmangattuvalappil, Nishanth G, Thangalazhy-Gopakumar, Suchithra
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article Biochar biochar yield carbon content higher heating value rough set machine learning biochar
LEADER 01000caa a22002652c 4500
001 NLM354328301
003 DE-627
005 20250304131700.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/09593330.2023.2192877  |2 doi 
028 5 2 |a pubmed25n1180.xml 
035 |a (DE-627)NLM354328301 
035 |a (NLM)36927324 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tang, Jia Yong  |e verfasserin  |4 aut 
245 1 0 |a Prediction model for biochar energy potential based on biomass properties and pyrolysis conditions derived from rough set machine learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2024 
500 |a Date Revised 20.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Biochar is a high-carbon-content organic compound that has potential applications in the field of energy storage and conversion. It can be produced from a variety of biomass feedstocks such as plant-based, animal-based, and municipal waste at different pyrolysis conditions. However, it is difficult to produce biochar on a large scale if the relationship between the type of biomass, operating conditions, and biochar properties is not understood well. Hence, the use of machine learning-based data analysis is necessary to find the relationship between biochar production parameters and feedstock properties with biochar energy properties. In this work, a rough set-based machine learning (RSML) approach has been applied to generate decision rules and classify biochar properties. The conditional attributes were biomass properties (volatile matter, fixed carbon, ash content, carbon, hydrogen, nitrogen, and oxygen) and pyrolysis conditions (operating temperature, heating rate residence time), while the decision attributes considered were yield, carbon content, and higher heating values. The rules generated were tested against a set of validation data and evaluated for their scientific coherency. Based on the decision rules generated, biomass with ash content of 11-14 wt%, volatile matter of 60-62 wt% and carbon content of 42-45.3 wt% can generate biochar with promising yield, carbon content and higher heating value via a pyrolysis process at an operating temperature of 425°C-475°C. This work provided the optimal biomass feedstock properties and pyrolysis conditions for biochar production with high mass and energy yield 
650 4 |a Journal Article 
650 4 |a Biochar 
650 4 |a biochar yield 
650 4 |a carbon content 
650 4 |a higher heating value 
650 4 |a rough set machine learning 
650 7 |a biochar  |2 NLM 
700 1 |a Chung, Boaz Yi Heng  |e verfasserin  |4 aut 
700 1 |a Ang, Jia Chun  |e verfasserin  |4 aut 
700 1 |a Chong, Jia Wen  |e verfasserin  |4 aut 
700 1 |a Tan, Raymond R  |e verfasserin  |4 aut 
700 1 |a Aviso, Kathleen B  |e verfasserin  |4 aut 
700 1 |a Chemmangattuvalappil, Nishanth G  |e verfasserin  |4 aut 
700 1 |a Thangalazhy-Gopakumar, Suchithra  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Environmental technology  |d 1993  |g 45(2024), 15 vom: 17. Juni, Seite 2908-2922  |w (DE-627)NLM098202545  |x 1479-487X  |7 nnas 
773 1 8 |g volume:45  |g year:2024  |g number:15  |g day:17  |g month:06  |g pages:2908-2922 
856 4 0 |u http://dx.doi.org/10.1080/09593330.2023.2192877  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2024  |e 15  |b 17  |c 06  |h 2908-2922